如圖,將△ABC的頂點(diǎn)A放在⊙O上,現(xiàn)從AC與⊙O相切于點(diǎn)A(如圖1)的位置開(kāi)始,將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<120°),旋轉(zhuǎn)后AC,AB分別與⊙O交于點(diǎn)E,F(xiàn),連接EF(如圖2).已知∠BAC=60°,∠C=90°,AC=8,⊙O的直徑為8.在旋轉(zhuǎn)過(guò)程中,有以下幾個(gè)量:①弦EF的長(zhǎng) ②
EF
的長(zhǎng) ③∠AFE的度數(shù)  ④點(diǎn)O到EF的距離.其中不變的量是
①②④
①②④
(只填正確答案序號(hào)).
分析:在整個(gè)旋轉(zhuǎn)過(guò)程中,∠A為弦切角或圓周角,且大小不變,所以其所對(duì)的弦、弧不變,進(jìn)而利用勾股定理以及垂徑定理得出EF不變.
解答:解:∵在整個(gè)旋轉(zhuǎn)過(guò)程中,∠A為弦切角或圓周角,且大小不變,所以其所對(duì)的弦、弧不變;
∴①②正確;
∵如圖所示,過(guò)點(diǎn)O作OM⊥EF于點(diǎn)M,
根據(jù)勾股定理得:O到EF的距離是OM=
OF2-(
1
2
EF)2
,
∵OF不變,EF不變,
∴④正確;
∵在整個(gè)旋轉(zhuǎn)過(guò)程中,∠AEF和∠AFE都在改變,大小不能確定,
∴③錯(cuò)誤;
故答案為:①②④.
點(diǎn)評(píng):此題考查了旋轉(zhuǎn)的性質(zhì)及切線(xiàn)和圓的有關(guān)性質(zhì),正確根據(jù)圓心角定理得出對(duì)應(yīng)角與弦之間關(guān)系是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué)(解析版) 題型:解答題

問(wèn)題提出:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)點(diǎn)作為頂

點(diǎn),可把原n邊形分割成多少個(gè)互不重疊的小三角形?

問(wèn)題探究:為了解決上面的問(wèn)題,我們將采取一般問(wèn)題特殊化的策略,先從簡(jiǎn)單和具體的情形入手:

探究一:以△ABC的3個(gè)頂點(diǎn)和它內(nèi)部的1個(gè)點(diǎn)P,共4個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)互

不重疊的小三角形?如圖①,顯然,此時(shí)可把△ABC分割成3個(gè)互不重疊的小三角形.

探究二:以△ABC的3個(gè)頂點(diǎn)和它內(nèi)部的2個(gè)點(diǎn)P、Q,共5個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)

互不重疊的小三角形?

在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個(gè)點(diǎn)Q,那么點(diǎn)Q的位置會(huì)有兩種

情況:

一種情況,點(diǎn)Q在圖①分割成的某個(gè)小三角形內(nèi)部.不妨設(shè)點(diǎn)Q在△PAC的內(nèi)部,如圖②;

另一種情況,點(diǎn)Q在圖①分割成的小三角形的某條公共邊上.不妨設(shè)點(diǎn)Q在PA上,如圖③.

顯然,不管哪種情況,都可把△ABC分割成5個(gè)互不重疊的小三角形.

探究三:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的3個(gè)點(diǎn)P、Q、R,共6個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成      個(gè)

互不重疊的小三角形,并在圖④中畫(huà)出一種分割示意圖.

探究四:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+3)個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成        個(gè)

互不重疊的小三角形.

探究拓展:以四邊形的4個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+4)個(gè)點(diǎn)為頂點(diǎn),可把四邊形分割成

        個(gè)互不重疊的小三角形.

問(wèn)題解決:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)點(diǎn)作為頂點(diǎn),可把原n邊形分割成

        個(gè)互不重疊的小三角形.

實(shí)際應(yīng)用:以八邊形的8個(gè)頂點(diǎn)和它內(nèi)部的2012個(gè)點(diǎn),共2020個(gè)頂點(diǎn),可把八邊形分割成多少個(gè)互

不重疊的小三角形?(要求列式計(jì)算)

 

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇鹽城鹽都區(qū)九年級(jí)下學(xué)期期中質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版). 題型:解答題

問(wèn)題提出

我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問(wèn)題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問(wèn)題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過(guò)作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問(wèn)題解決

如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大�。�

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類(lèi)比應(yīng)用

1.已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a .試比較M與N的大�。�

2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊

滿(mǎn)足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長(zhǎng)方形,使得△ABC的兩個(gè)頂

點(diǎn)為長(zhǎng)方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長(zhǎng)方形的這一邊的對(duì)邊上。                     

      ①這樣的長(zhǎng)方形可以畫(huà)        個(gè);

②所畫(huà)的長(zhǎng)方形中哪個(gè)周長(zhǎng)最�。繛槭裁�?

拓展延伸                                                                                                                               

     已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿(mǎn)足a <b < c ,畫(huà)其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫(huà)AC、AB邊上的內(nèi)接正方形,問(wèn)哪條邊上的內(nèi)接正方形面積最大?為什么?

 

 

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué) 題型:解答題

如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,△ABC的頂

點(diǎn)都在格點(diǎn)上,建立平面直角坐標(biāo)系.

(1)點(diǎn)A的坐標(biāo)為            ,點(diǎn)C的坐標(biāo)為           

(2)將△ABC向左平移7個(gè)單位,請(qǐng)畫(huà)出平移后的△A1B1C1.若M為△ABC內(nèi)的一點(diǎn),其坐標(biāo)為(a,b),則平移后點(diǎn)M的對(duì)應(yīng)點(diǎn)M1的坐標(biāo)為           

(3)以原點(diǎn)O為位似中心,將△ABC縮小,使變換后得到的△A2B2C2與△ABC對(duì)應(yīng)邊的比為1∶2.請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫(huà)出△A2B2C2,并寫(xiě)出點(diǎn)A2的坐標(biāo):           

 

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的頂

點(diǎn)A、B、C在小正方形的頂點(diǎn)上,將△ABC向下平移4個(gè)單位、再向右平移3個(gè)單位得到△A1B1C1,

然后將△A1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°得到△A1B2C2

(1)在網(wǎng)格中畫(huà)出△A1B1C1和△A1B2C2

(2)計(jì)算線(xiàn)段AC在變換到A1C2的過(guò)程中掃過(guò)區(qū)域的面積(重疊部分不重復(fù)計(jì)算)

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:廣西自治區(qū)模擬題 題型:解答題

如圖,在網(wǎng)格中建立直角坐標(biāo)系,Rt△ABC的頂O點(diǎn)A、B、C都是網(wǎng)格的格點(diǎn)(即為小正方形頂點(diǎn))。(1)在網(wǎng)格中分別畫(huà)出將△ABC向右平移2格的△A′B′C′,和再將△A′B′C′繞原點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°后的△A′′B′′C′′;
(2)設(shè)小正方形邊長(zhǎng)為1,求A在兩次變換中所經(jīng)過(guò)的路徑總長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹