【題目】如圖,將一張長方形紙板按圖中虛線裁剪成塊,其中有塊是邊長都為厘米的大正方形,塊是邊長都為厘米的小正方形,塊是長為厘米,寬為厘米的一模一樣的小長方形,且,設圖中所有裁剪線(虛線部分)長之和為厘米.

(1)______(試用,的代數(shù)式表示);

(2)若每塊小長方形的面積為平方厘米,四個正方形的面積和為平方厘米,求的值.

【答案】(1) 6m+6n (2) 42

【解析】

1)將圖形虛線長度相加即可得;
2)根據(jù)正方形的面積得出正方形的邊長,再利用每塊小矩形的面積為10厘米2,得出等式求出m+n,進一步得到圖中所有裁剪線(虛線部分)長之和即可.

1)(1L=6m+6n,
故答案為:6m+6n;

2)依題意得,,,

,

,

,

,

圖中所有裁剪線(虛線部分)長之和為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示的晾衣架,支架主視圖的基本圖形是菱形,其示意圖如圖2,晾衣架伸縮時,點G在射線DP上滑動,∠CED的大小也隨之發(fā)生變化,已知每個菱形邊長均等于20cm,且AH=DE=EG=20cm.

(1)當∠CED=60°時,CD=________cm.

2)當CED60°變?yōu)?/span>120°時,點A向左移動了________cm(結果精確到0.1cm)(參考數(shù)據(jù) ≈1.73).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系xOy中,二次函數(shù)yax2bx3(a0)的圖象與x軸交于A,B兩點,點A在點B的左側,與y軸交于點C,且OCOB3OA

(1)求這個二次函數(shù)的解析式;

(2)設點D是點C關于此拋物線對稱軸的對稱點,直線AD,BC交于點P,試判斷直線ADBC是否垂直,并證明你的結論;

(3)(2)的條件下,若點M,N分別是射線PC,PD上的點,問:是否存在這樣的點M,N,使得以點P,M,N為頂點的三角形與ACP全等?若存在請求出點M,N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊三角形的三條邊相等,三個角都等于,如圖,都是邊三角形,連接.

1)如果點在同一條直線上,如圖①所示,試說明:;

2)如果點轉過一個角度,如圖②所示,(1)中的結論還能否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)圖象的一部分,圖象過點A3,0),對稱軸為直線x=1,給出以下結論:①abc0,0,4b+c0,④若B、C為函數(shù)圖象上的兩點,則,⑤當時, .其中正確的結論是(填寫代表正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(4,n),B(2,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點;

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求直線ABx軸的交點C的坐標及△AOB的面積;

(3)求不等式kx+b<0的解集(請直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中正確的是(

A.有且只有一條直線與已知直線垂直;

B.從直線外一點到這條直線的垂線段,叫做這點到這條直線距離;

C.互相垂直的兩條線段一定相交;

D.直線外一點與直線上各點連接而成的所有線段中,最短線段的長度是,則點到直線的距離是.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,點CD在線段AF上,ADCDCF,∠ABC=∠DEF90°,ABEF

1)若BC2,AB2,求BD的長;

2)求證:四邊形BCED是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校數(shù)學興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.

查看答案和解析>>

同步練習冊答案