(2012•邵陽(yáng))不等式4-2x>0的解集是
x<2
x<2
分析:根據(jù)一元一次方程的解法,移項(xiàng),系數(shù)化為1即可得解.
解答:解:移項(xiàng)得,-2x>-4,
系數(shù)化為1得,x<2.
故答案為:x<2.
點(diǎn)評(píng):本題考查了解簡(jiǎn)單不等式的能力,本題系數(shù)化為1時(shí)不等式的方向要改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•邵陽(yáng))如圖所示,在Rt△ABC中,∠ACB=90°,∠B=30°,ED是BC的垂直平分線,請(qǐng)寫出圖中兩條相等的線段是
BD=CD(答案不唯一)
BD=CD(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•邵陽(yáng))為配合全市“倡導(dǎo)低碳綠色生活,推進(jìn)城鎮(zhèn)節(jié)水減排”的宣傳活動(dòng),某校數(shù)學(xué)課外活動(dòng)小組把用水習(xí)慣分為“很注意解決用水(A)”、“較注意解決用水(B)”、“不注意解決用水(C)”三類情況,設(shè)計(jì)了調(diào)查問卷在中學(xué)生中開展調(diào)查,并將調(diào)查結(jié)果分析整理后,制成如圖所示的兩個(gè)統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息解答下列問題:
(1)這次調(diào)查問卷調(diào)查共調(diào)查了多少名學(xué)生?
(2)在扇形統(tǒng)計(jì)圖中,“B”所對(duì)應(yīng)的扇形的圓心角度數(shù)是多少?
(3)如果設(shè)該校共有學(xué)生3000人,試估計(jì)“不注意解決用水”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•邵陽(yáng))如圖所示,已知拋物線C0的解析式為y=x2-2x
(1)求拋物線C0的頂點(diǎn)坐標(biāo);
(2)將拋物線C0每次向右平移2個(gè)單位,平移n次,依次得到拋物線C1、C2、C3、…、Cn(n為正整數(shù))
①求拋物線C1與x軸的交點(diǎn)A1、A2的坐標(biāo);
②試確定拋物線Cn的解析式.(直接寫出答案,不需要解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•邵陽(yáng))如圖所示,直線y=-
34
x+b
與x軸相交于點(diǎn)A(4,0),與y軸相交于點(diǎn)B,將△AOB沿著y軸折疊,使點(diǎn)A落在x軸上,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)點(diǎn)P為線段CA上的一個(gè)動(dòng)點(diǎn),點(diǎn)P與點(diǎn)A、C不重合,連接PB,以點(diǎn)P為端點(diǎn)作射線PM交AB于點(diǎn)M,使∠BPM=∠BAC
①求證:△PBC∽△MPA;
②是否存在點(diǎn)P使△PBM為直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案