某超市銷售某種品牌的純牛奶,已知進價為每箱30元,生產(chǎn)廠家要求每箱的售價在30元~60元之間(包括30和60).市場調(diào)查發(fā)現(xiàn):若每箱40元銷售,平均每天可銷售80箱,價格每降低1元,平均每天多銷售2箱;價格每升高1元,平均每天少銷售2箱.
(1)寫出平均每天的銷售量y(箱)與每箱售價x(元)之間的函數(shù)關(guān)系式(注明自變量x的取值范圍);
(2)當每箱牛奶售價為多少時,平均每天的利潤最大?最大利潤為多少?(每箱的利潤=售價-進價);
(3)濤濤說:“某天利潤最大時,這一天的銷售額也最大.”你認為對嗎?請說明理由.
分析:(1)由于若每箱40元銷售,平均每天可銷售80箱,價格每降低1元,平均每天多銷售2箱;價格每升高1元,平均每天少銷售2箱,那么每箱售價為x可以銷售[-2(x-40)+80],由此即可列出平均每天的銷售量y(箱)與每箱售價(元)之間的函數(shù)關(guān)系式,然后結(jié)合已知條件求出自變量x的取值范圍;
(2)利用(1)的函數(shù)解析式和二次函數(shù)的性質(zhì)即可解決問題;
(3)不對,利潤和銷售額沒有直接聯(lián)系,可以計算說明.
解答:解:(1)依題意得
y=-2(x-40)+80=160-2x(30≤x≤60);
(2)設(shè)利潤為w,依題意得
w=y(x-30)=-2x2+220x-4800 (30≤x≤60),
∵a=-2<0,
∴w有最大值,
當x=-
b
2a
=55時,w的最大值=1250(元);
(3)錯誤,設(shè)銷售額M=xy=160x-2x2,
     當 M最大時,x=40,顯然Q不取最大值.
故說法錯誤.
點評:本題考查的是二次函數(shù)在實際生活中的應用,解題時首先正確理解題意,然后根據(jù)題目隱含條件列出函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)即可解決問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

某超市銷售某種品牌的純牛奶,已知進價為每箱40元,市場調(diào)查發(fā)現(xiàn):若以每箱50元銷售,平均每天可銷售90箱,在此基礎(chǔ)上,若價格每提高1元,則平均每天少銷售3箱.
(1)寫出平均每天銷售y箱與每箱售價x元之間的函數(shù)關(guān)系式;
(2)求出超市平均每天銷售這種牛奶的利潤(ω)元與每箱的售價(x)元之間的二次函數(shù)的關(guān)系式;
(3)當牛奶售價為多少時,平均每天的利潤最大,最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、某超市銷售某種品牌的牛奶,進價為40元/箱,市場調(diào)查發(fā)現(xiàn),若每箱50元平均每月可銷售90箱,價格每升高1元,平均每月少售3箱.
①請寫出超市銷售這種牛奶某月的利潤Y(元)與每箱牛奶的售價X(元)之間的函數(shù)關(guān)系.
②設(shè)某月銷售這種牛奶獲利1200元,此利潤是否為該月的最大利潤,請說明理由.
③請分析并回答售價在什么范圍內(nèi),超市獲得的月利潤不低于900元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、某超市銷售某種品牌的純牛奶,已知進價為每箱45元.市場調(diào)查發(fā)現(xiàn):若每箱以60元銷售,平均每天可銷售40箱,價格每降低1元,平均每天多銷售20箱,但銷售價不能低于48元,設(shè)每箱x元(x為正整數(shù))
(1)寫出平均每天銷售利利潤y(元)與x(元)之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)某天的利潤為1400元,此利潤是否為一天的最大利潤,最大利潤是多少?
(3)請分析回答售價在什么范圍商家獲得的日利潤不低于1040元.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省揚州中學樹人學校中考數(shù)學二模試卷(解析版) 題型:解答題

某超市銷售某種品牌的純牛奶,已知進價為每箱30元,生產(chǎn)廠家要求每箱的售價在30元~60元之間(包括30和60).市場調(diào)查發(fā)現(xiàn):若每箱40元銷售,平均每天可銷售80箱,價格每降低1元,平均每天多銷售2箱;價格每升高1元,平均每天少銷售2箱.
(1)寫出平均每天的銷售量y(箱)與每箱售價x(元)之間的函數(shù)關(guān)系式(注明自變量x的取值范圍);
(2)當每箱牛奶售價為多少時,平均每天的利潤最大?最大利潤為多少?(每箱的利潤=售價-進價);
(3)濤濤說:“某天利潤最大時,這一天的銷售額也最大.”你認為對嗎?請說明理由.

查看答案和解析>>

同步練習冊答案