【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.當(dāng)﹣1<x<1時,化簡 [x]+x+[x)的結(jié)果是__________________

【答案】-2或﹣1或0或1或2

【解析】有三種情況:

①當(dāng)時,[x]-1,(x)=0,[2.3=-10

[x]+x+[x)=-2-1;

②當(dāng)時,[x]0,(x)=0,[2.3=0

[x]+x+[x)=0;

③當(dāng)時,[x]0,(x)=1,[2.3=01

[x]+x+[x)=12;

綜上所述,化簡[x]+x+[x)的結(jié)果是-2或﹣1012.

故答案為:-2或﹣1012.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,則下列敘述不正確的是( 。

A. O不在直線AC

B. 射線AB與射線BC是指同一條射線

C. 圖中共有5條線段

D. 直線AB與直線CA是指同一條直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點MO,N對應(yīng)的數(shù)分別為-1,0,3,P為數(shù)軸上任意一點,其對應(yīng)的數(shù)為x

1MN的長為 ;

2如果點P到點MN的距離相等,那么x的值是 ;

3數(shù)軸上是否存在點P使點P到點M、N的距離之和是8?若存在,直接寫出x的值;若不存在請說明理由

4如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)t分鐘時點P到點MN的距離相等,t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,先把梯形ABCD向左平移6個單位長度得到梯形A1B1C1D1.

(1)請你在平面直角坐標(biāo)系中畫出梯形A1B1C1D1

(2)以點C1為旋轉(zhuǎn)中心,把(1)中畫出的梯形繞點C1順時針方向旋轉(zhuǎn) 得到梯形A2B2C2D2 ,請你畫出梯形A2B2C2D2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1, O為正方形ABCD的中心,分別延長OAOD到點F,E,使OF=2OA,OE=2OD,連接EF,將FOE繞點O按逆時針方向旋轉(zhuǎn)角α得到FOE,連接AE,BF(如圖2).

1探究AEBF的數(shù)量關(guān)系,并給予證明;

2當(dāng)α=30°時,求證: AOE為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠α和∠β互補,且∠α<∠β,下列表達(dá)式:①90°﹣α;②∠β﹣90°;β+∠α);β﹣α)中,等于∠α的余角的式子有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.

(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD,BE分別是ABC的中線和角平分線,ADBE于點G,ADBE6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD平分∠ABC. 請補全圖形后,依條件完成解答.

(1)在直線BC下方畫∠CBE,使∠CBE與∠ABC互補;

(2)在射線BE上任取一點F,過點F畫直線FGBDBC于點G;

(3)判斷∠BFG與∠BGF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案