【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,則對角線BD的長為 ;
②若AC⊥BD,求證:AD=CD;
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點是對角線上一點,且,過點作直線分別交邊于點,使四邊形是等腰直角四邊形.直接寫出的長為 .
【答案】(1)①;②見解析;(2)5或6.5.
【解析】
(1)①根據(jù)有一組對邊平行且相等的四邊形是平行四邊形可證得四邊形ABCD是平行四邊形;根據(jù)鄰邊相等的平行四邊形是菱形可證得四邊形ABCD是菱形;根據(jù)有一個角是直角的菱形是正方形可證得四邊形ABCD是正方形,從而求出對角邊即可.
②根據(jù)全等三角形的判定定理可得出三角形全等,然后得出對應(yīng)邊相等即可.
(2)緊抓等腰直角四邊形的概念,分類討論,先根據(jù)圖形定義可直接得出AE的長度,再結(jié)合相似三角形的性質(zhì)和判定定理可求出AE的長度.
解:(1)①∵AB=CD,AB∥CD,
∴四邊形ABCD是平行四邊形,
又AB=BC,∠ABC=90°,
∴四邊形ABCD是正方形,
∴BD=AC==
所以答案為.
②如圖1,連接AC,BD,
∵AB=BC,AC⊥BD,
∴∠ABD=∠CBD,
又∵BD=BD,
∴△ABD≌△CBD,
∴AD=CD.
(2)
因為四邊形ABFE是等腰直角四邊形,
所以可以是AB=AE或AB=BF.
當(dāng)AB=AE時,AE=AB=5,
當(dāng)AB=BF時,BF=5
∵DE∥BF,
∴△DPE∽△BPF,
∴,
∴DE=2.5
∴AE=9-2.5=6.5
綜上,AE結(jié)果為5或6.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從相距420km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時,兩車分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線上).甲車到達(dá)C地后因有事立即按原路原速返回A地,乙車從B地直達(dá)A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時間x(小時)的關(guān)系如圖所示,結(jié)合圖象信息回答下列問題:
(1)甲車的速度是 千米/時,乙車的速度是 千米/時;
(2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時間x(小時)之間的函數(shù)關(guān)系式;
(3)甲車出發(fā)多長時間后兩車相距90千米?請你直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工藝品店購進(jìn)A,B兩種工藝品,已知這兩種工藝品的單價之和為200元,購進(jìn)2個A種工藝品和3個B種工藝品需花費520元.
(1)求A,B兩種工藝品的單價;
(2)該店主欲用9600元用于進(jìn)貨,且最多購進(jìn)A種工藝品36個,B種工藝品的數(shù)量不超過A種工藝品的2倍,則共有幾種進(jìn)貨方案?
(3)已知售出一個A種工藝品可獲利10元,售出一個B種工藝品可獲利18元,該店主決定每售出一個B種工藝品,為希望工程捐款m元,在(2)的條件下,若A,B兩種工藝品全部售出后所有方案獲利均相同,則m的值是多少?此時店主可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十三五”以來,黨中央,國務(wù)院不斷加大脫貧攻堅的支持決策力度,并出臺配套文件,國家機(jī)關(guān)各部門也出臺多項政策文件或?qū)嵤┓桨福硢挝徽J(rèn)真分析被幫扶人各種情況后,建議被幫扶人大力推進(jìn)特色產(chǎn)業(yè),大量栽種甜橙;同時搭建電商運營服務(wù)平臺,開設(shè)網(wǎng)店銷售農(nóng)產(chǎn)品橙.豐收后,將一批甜橙采取現(xiàn)場銷售和網(wǎng)絡(luò)銷售相結(jié)合進(jìn)行試銷,統(tǒng)計后發(fā)現(xiàn):同樣多的甜橙,現(xiàn)場銷售可獲利800元,網(wǎng)絡(luò)銷售則可獲利1000元,網(wǎng)絡(luò)銷售比現(xiàn)場銷售每件多獲利5元
(1)現(xiàn)場銷售和網(wǎng)絡(luò)銷售每件分別多少元?
(2)根據(jù)甜橙試銷情況分析,現(xiàn)場銷售量a(件)和網(wǎng)絡(luò)銷售量b(件)滿足如下關(guān)系式:b=﹣a2+12a﹣200.求a為何值時,農(nóng)戶銷售甜橙獲得的總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,連接BD,點E在BA的延長線上,連接EC,分別交AD、BD于點F、點G,連接ED并延長交BC的延長線于點H,則下列結(jié)論錯誤的是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點A在y軸的正半軸上,點B在x軸的負(fù)半軸上,點C是線段AB上一動點CD⊥y軸于點D,CE⊥x軸于點E,OA=6,AD=OE.
(1)求直線AB的解析式;
(2)連接ED,過點C作CF⊥ED,垂足為F,過點B作x軸的垂線交FC的延長線于點G,求點G的坐標(biāo);
(3)在(2)的條件下,連接AG,作四邊形AOBG關(guān)于y軸的對稱圖形四邊形AONM,連接DN,將線段DN繞點N逆時針旋轉(zhuǎn)90°得到線段PN,H為OD中點,連接MH、PH,四邊形MHPN的面積為40,連接FH,求線段FH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的內(nèi)接三角形,為的直徑,過點作的切線交的延長線于點.
(1)求證:;
(2)過點作的切線交于點,求證:;
(3)若點為直徑下方半圓的中點,連接交于點,且,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點為雙曲線上的一點,過點作軸、軸的垂線,分別交直線于點、兩點(點在點下方.若直線與軸交于點,與軸相交于點,則的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com