【題目】如圖,∠1+∠2=180,∠A=∠C,DA平分∠BDF。
(1)求證:AE∥FC.
(2)AD與BC的位置關(guān)系如何,為什么?
(3)證明:BC平分∠DBE.
【答案】(1)證明見解析;(2)AD∥BC;(3)證明見解析;
【解析】試題分析:(1)證明∠1=∠CDB,利用同位角相等,兩直線平行即可證得;
(2)平行,根據(jù)平行線的性質(zhì)可以證得∠A=∠CBE,然后利用平行線的判定方法即可證得;
(3)∠EBC=∠CBD,根據(jù)平行線的性質(zhì)即可證得.
試題解析:(1)平行.理由如下:
∵∠1+∠2=180°,∠2+∠CDB=180°(鄰補(bǔ)角定義),
∴∠1=∠CDB,
∴AE∥FC(同位角相等兩直線平行);
(2)平行.理由如下:
∵AE∥CF,
∴∠C=∠CBE(兩直線平行,內(nèi)錯角相等),
又∵∠A=∠C,
∴∠A=∠CBE,
∴AD∥BC(同位角相等,兩直線平行);
(3)平分.理由如下:
∵DA平分∠BDF,
∴∠FDA=∠ADB,
∵AE∥CF,AD∥BC,
∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,
∴∠EBC=∠CBD,
∴BC平分∠DBE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了從甲、乙兩名同學(xué)中選拔一個參加比賽,對他們的射擊水平進(jìn)行了測驗,兩個在相同條件下各射靶10次,命中的環(huán)數(shù)如下(單位:環(huán))
甲:7,8,6,8,6,5,9,10,7,4
乙:9,5,7,8,6,8,7,6,7,7
(1)求甲,乙,S甲2,S乙2;
(2)你認(rèn)為該選拔哪名同學(xué)參加射擊比賽?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的函數(shù)圖象與x軸、y軸分別交于點(diǎn)A、B,以線段AB為直角邊在第一象限內(nèi)作Rt△ABC,且使∠ABC=30°;
(1)如果點(diǎn)P(m,)在第二象限內(nèi),試用含m的代數(shù)式表示四邊形AOPB的面積,并求當(dāng)△APB與△ABC面積相等時m的值;
(2)如果△QAB是等腰三角形并且點(diǎn)Q在坐標(biāo)軸上,請求出點(diǎn)Q所有可能的坐標(biāo);
(3)是否存在實(shí)數(shù)a,b使一次函數(shù)和y=ax+b的圖象關(guān)于直線y=x對稱?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC內(nèi)邊長分別為a,b,c的三個正方形,則a,b,c滿足的關(guān)系式是( )
A. b=a+c B. b=ac C. b2=a2+c2 D. b2=a2c2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店三月份銷售鉛筆100支,四、五兩個月銷售量連續(xù)增長.若月平均增長率為x,則該文具店五月份銷售鉛筆的支數(shù)是( )
A.100(1+x)
B.100(1+x)2
C.100(1+x2)
D.100(1+2x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店將某品牌皮衣按原價提高40%后標(biāo)價,又以8折優(yōu)惠賣出,結(jié)果每件皮衣比按原價賣多賺了180元,這種皮衣原價是_________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一根長20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長各做成一個正方形,設(shè)其中一段鐵絲長為4x cm,兩個正方形的面積和為y cm2
(1)求y與x的函數(shù)關(guān)系式;
(2)要使這兩個正方形面積之和為17cm2,那么這根鐵絲剪成兩段后的長度分別是多少?
(3)要使這兩個正方形面積之和最小,則這根鐵絲剪成兩段后的長度各是多少?這兩個正方形面積之和最小為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com