【題目】如圖,小區(qū)有一塊四邊形空地,其中.為響應(yīng)沙區(qū)創(chuàng)文,美化小區(qū)的號召,小區(qū)計劃將這塊四邊形空地進(jìn)行規(guī)劃整理.過點(diǎn)作了垂直于的小路.經(jīng)測量,,,.

1)求這塊空地的面積;

2)求小路的長.(答案可含根號)

【答案】1)(2+14m2;(2

【解析】

1)根據(jù)ABBC算出AC的長,再由ADCD 的長得出△ACD是直角三角形,分別算出△ABC和△ACD的面積即可;

2)利用三角形面積的兩種不同表示方法,即×AB×AC=×BC×AE可得AE的長.

解:(1)∵ABAC,AB=4BC=9,

∴在△ABC中,

==,

CD=4AD=7,

,

即:,

∴空地ABCD的面積=SABC+SADC=×AB×AC+×AD×CD=2+14m2;

2)在△ABC中,

SABC=×AB×AC=×BC×AE

可得AB×AC= BC×AE,

=9×AE

解得AE=.

答:小路AE的長為m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幾何模型:

條件:如圖1,A、B是直線同旁的兩個定點(diǎn).

問題:在直線上確定一點(diǎn)P,使PA+PB的值最。

方法:作點(diǎn)A關(guān)于直線的對稱點(diǎn)A′,連接A′B于點(diǎn)P,則PA+PB=A′B的值最。ú槐刈C明).

模型應(yīng)用:

(1)如圖2,已知平面直角坐標(biāo)系中兩定點(diǎn)A(0,-1),B(2,-1),Px軸上一動點(diǎn), 則當(dāng)PA+PB的值最小時,點(diǎn)P的橫坐標(biāo)是______,此時PA+PB的最小值是______;

(2)如圖3,正方形ABCD的邊長為2,EAB的中點(diǎn),PAC上一動點(diǎn).由正方形對稱性可知,BD關(guān)于直線AC對稱,連接BD,則PB+PE的最小值是______;

(3)如圖4,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線AC上有一動點(diǎn)P,則PD+PE的最小值為 ;

(4)如圖5,在菱形ABCD中,AB=8,∠B=60°,點(diǎn)G是邊CD邊的中點(diǎn),點(diǎn)E、F分別是AG、AD上的兩個動點(diǎn),則EF+ED的最小值是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)農(nóng)業(yè)農(nóng)村部消息,國內(nèi)受豬瘟與豬周期疊加影響,生豬供應(yīng)量大幅減少,從今年6月起豬肉價格連續(xù)上漲一品生鮮超市在61日若售出五花肉和排骨,銷售額為366元;若售出五花肉和排骨,銷售額為186.

161日每千克五花肉和排骨的價格各是多少元?

261日五花肉和排骨的銷售量分別為、由于豬肉價格持續(xù)上漲,111日五花肉的銷售價格在61日的基礎(chǔ)上增長了,銷售量減少了;排骨的銷售價格在61日的基礎(chǔ)上增加了元,銷售量下降了.結(jié)果1l1日的銷售額比61日的銷售額多5100元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個反比例函數(shù)y=(k>1)和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)Py=的圖象上,PCx軸于點(diǎn)C,交y=的圖象于點(diǎn)A,PDy軸于點(diǎn)D,交y=的圖象于點(diǎn)B,BEx軸于點(diǎn)E,當(dāng)點(diǎn)Py=圖象上運(yùn)動時,以下結(jié)論:①BADC始終平行;②PAPB始終相等;③四邊形PAOB的面積不會發(fā)生變化:④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為選拔一名選手參加美麗邵陽,我為家鄉(xiāng)做代言主題演講比賽,經(jīng)研究,按圖所示的項目和權(quán)數(shù)對選拔賽參賽選手進(jìn)行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:

項目

選手

服裝

普通話

主題

演講技巧

李明

85

70

80

85

張華

90

75

75

80

結(jié)合以上信息,回答下列問題:

(1)求服裝項目的權(quán)數(shù)及普通話項目對應(yīng)扇形的圓心角大。

(2)求李明在選拔賽中四個項目所得分?jǐn)?shù)的眾數(shù)和中位數(shù);

(3)根據(jù)你所學(xué)的知識,幫助學(xué)校在李明、張華兩人中選擇一人參加美麗邵陽,我為家鄉(xiāng)做代言主題演講比賽,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)測試中,同年級人數(shù)相同的甲、乙兩個班的成績統(tǒng)計如下表:

班級

平均分

中位數(shù)

方差

甲班

乙班

數(shù)學(xué)老師讓同學(xué)們針對統(tǒng)計的結(jié)果進(jìn)行一下評估,學(xué)生的評估結(jié)果如下:

這次數(shù)學(xué)測試成績中,甲、乙兩個班的平均水平相同;

甲班學(xué)生中數(shù)學(xué)成績95分及以上的人數(shù)少;

乙班學(xué)生的數(shù)學(xué)成績比較整齊,分化較小.

上述評估中,正確的是______填序號

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2臺大收割機(jī)和5臺小收割機(jī)同時工作2 h共收割小麥3.6hm2,3臺大收割機(jī)和2臺小收割機(jī)同時工作5 h共收割小麥8 hm2.1臺大收割機(jī)和1臺小收割機(jī)每小時各收割小麥多少公頃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC, AD是∠BAC的平分線,DFAB,DMAC垂足分別為F、M,AF=10cm BF=6cm ,AC=14cm.動點(diǎn)E3cm/s的速度從A點(diǎn)向B點(diǎn)運(yùn)動,動點(diǎn)G1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動,當(dāng)一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)隨之停止運(yùn)動,設(shè)運(yùn)動時間為t s.當(dāng)t=__________s, DFE與△DMG全等.(寫出符合題意的t的所有取值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△AOB中,∠AOB90°,AO3cmBO4cm,將△AOB繞頂點(diǎn)O,按順時針方向旋轉(zhuǎn)到△A1OB1處,此時線段OB1AB的交點(diǎn)D恰好為AB的中點(diǎn),則線段B1D的長度為(  )

A.cmB.1cmC.2cmD.cm

查看答案和解析>>

同步練習(xí)冊答案