【題目】已知,點(diǎn) E 在正方形 ABCD AB 邊上(不與點(diǎn) AB 重合),BD 是對(duì)角線,延長(zhǎng) AB 到點(diǎn) F,使 BFAE,過(guò)點(diǎn) E BD 的垂線,垂足為 M,連接 AM,CF

1)求證:MBME;

2)①用等式表示線段 AM CF 的數(shù)量關(guān)系,并證明;

②用等式表示線段 AM,BM,DM 之間的數(shù)量關(guān)系,并說(shuō)明理由.

【答案】1)證明見(jiàn)解析,(2,證明見(jiàn)解析;(3,證明見(jiàn)解析.

【解析】

1)證是等腰直角三角形即可得;

2先證,由,證,,由是等腰直角三角形,從而得;

連接,證四邊形是平行四邊形得,由,,結(jié)合,,從而得出答案.

解:(1四邊形是正方形,是對(duì)角線,

,

,

是等腰直角三角形,

;

2如圖所示,連接、,

是等腰直角三角形,

,,

,

,

,

,

,

,

,,

,

是等腰直角三角形,

,

;

,

如圖,連接,

,

,

,

,,

四邊形是平行四邊形,

,

,,

,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABC=90°,AC=AD,M,N分別為AC,CD的中點(diǎn),連結(jié)BM,MN

1)求證BM=MN;

2)若∠BCN=135°,求∠BMN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=-3x3x軸,y軸分別交于A,B,兩點(diǎn),以AB為邊在第一象限內(nèi)作正方形ABCD,點(diǎn)D在反比例函數(shù)y (k≠0)的圖象上.

(1)k的值;

(2)若將正方形沿x軸負(fù)方向平移m個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該反比例函數(shù)的圖象上,則m的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,的高,的角平分線,若,

1)求的度數(shù);

2)若點(diǎn)F為線段上任一點(diǎn),當(dāng)為直角三角形時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(3a-5,a+1

1)若點(diǎn)Ay軸上,求點(diǎn)A的坐標(biāo).

2)若點(diǎn)Ax軸的距離與到y軸的距離相等,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),則PE+PB的最小值是( ).

A.1
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,EDFG交于點(diǎn)H,∠C=EFG,∠CED=GHD.

1)求證:ABCD

2)若∠EHF=80°,∠D=40°,求∠AEM的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,

請(qǐng)寫(xiě)出各點(diǎn)的坐標(biāo).

若把向上平移2個(gè)單位,再向左平移1個(gè)單位得到,寫(xiě)出、、的坐標(biāo),并在圖中畫(huà)出平移后圖形.

求出三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一筆直的沿湖道路l上有A、B兩個(gè)游船碼頭,觀光島嶼C在碼頭 A北偏東60°的方向,在碼頭 B北偏西45°的方向,AC=4km.游客小張準(zhǔn)備從觀光島嶼C乘船沿CA回到碼頭A或沿CB回到碼頭B,設(shè)開(kāi)往碼頭A、B的游船速度分別為v1、v2 , 若回到 A、B所用時(shí)間相等,則 =(結(jié)果保留根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案