已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由.
解:(1)∵二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),
∴根據(jù)題意,得,
解得,
∴拋物線的解析式為y=﹣x2+2x+3.
(2)由y=﹣x2+2x+3得,D點坐標(biāo)為(1,4),
∴CD==,
BC==3,
BD==2,
∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,
∴CD2+BC2=BD2,
∴△BCD是直角三角形;
(3)存在.CD2+BC2=()2+(3)2=20,BD2=(2)2=
y=﹣x2+2x+3對稱軸為直線x=1.
①若以CD為底邊,則PD=PC,
設(shè)P點坐標(biāo)為(x,y),根據(jù)兩點間距離公式,
得x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,
即y=4﹣x.
又P點(x,y)在拋物線上,
∴4﹣x=﹣x2+2x+3,
即x2﹣3x+1=0,
解得x1=,x2=<1,應(yīng)舍去,
∴x=,
∴y=4﹣x=,
即點P坐標(biāo)為(,).
②若以CD為一腰,
∵點P在對稱軸右側(cè)的拋物線上,由拋物線對稱性知,點P與點C關(guān)于直線x=1對稱,
此時點P坐標(biāo)為(2,3).
∴符合條件的點P坐標(biāo)為(,)或(2,3).
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將矩形ABCD沿對角線BD對折,點C落在E處,BE與AD相交于點F.若DE=4,BD=8.
(1)求證:AF=EF;
(2)求證:BF平分∠ABD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
中學(xué)生上學(xué)帶手機的現(xiàn)象越來越受到社會的關(guān)注,為此媒體記者隨機調(diào)查了某校若干名學(xué)生上學(xué)帶手機的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖1、圖2補充完整;
(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是由6個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A.主視圖改變,左視圖改變 B. 俯視圖不變,左視圖不變
C.俯視圖改變,左視圖改變 D. 主視圖改變,左視圖不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列各式運算正確的是( 。
A.a(chǎn)3+a2=2a5 B. a3﹣a2=a C. (a3)2=a5 D. a6÷a3=a3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com