如圖1,把邊長分別是為4和2的兩個正方形紙片OABC和OD′E′F′疊放在一起.
(1)操作1:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉45°得到正方形ODEF,如圖2,連接AD、CF,線段AD與CF之間有怎樣的數(shù)量關系?試證明你的結論;
(2)操作2,如圖2,將正方形ODEF沿著射線DB以每秒1個單位的速度平移,平移后的正方形ODEF設為正方形PQMN,如圖3,設正方形PQMN移動的時間為x秒,正方形PQMN與正方形OABC的重疊部分面積為y,直接寫出y與x之間的函數(shù)解析式;
(3)操作3:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉90°得到正方形OHKL,如圖4,求△ACK的面積.
(1)相等  見解析    (2)見解析     (3)8
解:(1)相等
由旋轉的性質得∠AOB=∠COF,
在△AOD和△COF中,

∴△AOD≌△COF(SAS),
∴AD=CF;
(2)①當0≤x≤4﹣4時,y=22(2﹣x)2=﹣x2+2x+2;
②當4﹣4≤x≤2時,y=22(2﹣x)2(4+x﹣42;
③2≤x≤4﹣2時,y=22(4+x﹣42;
④4﹣2≤x≤4時,y=(4﹣x)2
⑤x≥4時,y=0.
(3)連接OK,

∵∠COK=∠ACO=45°,
∴OK∥AC,
∴S△ACK=S△AOC=8.
(1)根據(jù)旋轉的性質得到∠AOB=∠COF,然后證得△AOD≌△COF后即可證得AD=CF;
(2)分當0≤x≤4﹣4時、當4﹣4≤x≤2時,2≤x≤4﹣2時、4﹣2≤x≤4時、x≥4時五種情況列出兩個變量之間的函數(shù)關系式即可;
(3)連接OK,利用內錯角相等得到OK∥AC,然后得到S△ACK=S△AOC=8.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點C(0,4)與x軸交于點A、B,點B(4,0),拋物線的對稱軸為x=1.直線AD交拋物線于點D(2,m),
(1)求二次函數(shù)的解析式并寫出D點坐標;
(2)點Q是線段AB上的一動點,過點Q作QE∥AD交BD于E,連結DQ,當△DQE的面積最大時,求點Q的坐標;
(3)拋物線與y軸交于點C,直線AD與y軸交于點F,點M為拋物線對稱軸上的動點,點N在x軸上,當四邊形CMNF周長取最小值時,求出滿足條件的點M和點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,拋物線與x軸交于點A(-2,0)和點B,與y軸交于點C(0,),線段AC上有一動點P從點A出發(fā),以每秒1個單位長度的速度向點C移動,線段AB上有另一個動點Q從點B出發(fā),以每秒2個單位長度的速度向點A移動,兩動點同時出發(fā),設運動時間為t秒.
(1)求該拋物線的解析式;
(2)在整個運動過程中,是否存在某一時刻,使得以A,P,Q為頂點的三角形與△AOC相似?如果存在,請求出對應的t的值;如果不存在,請說明理由.
(3)在y軸上有兩點M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,請直接寫出相應的m、t的值以及AM+MN+NP的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

平面直角坐標第xoy中,A點的坐標為(0,5).B、C分別是x軸、y軸上的兩個動點,C從A出發(fā),沿y軸負半軸方向以1個單位/秒的速度向點O運動,點B從O出發(fā),沿x軸正半軸方向以1個單位/秒的速度運動.設運動時間為t秒,點D是線段OB上一點,且BD=OC.點E是第一象限內一點,且AEDB.
(1)當t=4秒時,求過E、D、B三點的拋物線解析式.
(2)當0<t<5時,(如圖甲),∠ECB的大小是否隨著C、B的變化而變化?如果不變,求出它的大。
(3)求證:∠APC=45°
(4)當t>5時,(如圖乙)∠APC的大小還是45°嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如果將拋物線向下平移3個單位,那么所得新拋物線的表達式是       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在菱形ABCD中,對角線AC、BD相交于點O,AC=8,BD=6.現(xiàn)有兩動點P、Q分別從A、C兩點同時出發(fā),點P以每秒1個單位長的速度由點A向點D做勻速運動,點Q沿折線CB—BA向點A做勻速運動.
(1)點P將要運行路徑AD的長度為     ;點Q將要運行的路徑折線CB—BA的長度為        .
(2)當點Q在BA邊上運動時,若點Q的速度為每秒2個單位長,設運動時間為t秒.
①求△APQ的面積S關于t的函數(shù)關系式,并求自變量t的取范圍;
②求當t為何值時,S有最大值,最大值是多少?
(3)如圖2,若點Q的速度為每秒a個單位長(a≤),當t =4秒時:
①此時點Q是在邊CB上,還是在邊BA上呢?
②△APQ是等腰三角形,請求出a的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一段拋物線:y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于點O,A1;

將C1繞點A1旋轉180°得C2,交x軸于點A2;
將C2繞點A2旋轉180°得C3,交x軸于點A3;

如此進行下去,直至得C13.若P(37,m)在第13段拋物線C13上,則m=(     ).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

學習了函數(shù)的知識后,數(shù)學活動小組到文具店調研一種進價為每支2元的活動筆的銷售情況。調查后發(fā)現(xiàn),每支定價3元,每天能賣出100支,而且每支定價每下降0.1元,其銷售量將增加10支。但是物價局規(guī)定,該活動筆每支的銷售利潤不能超過其進價的40%。設每支定價x元,每天的銷售利潤為y元。
(1)求每天的銷售利潤為y與每支定價x之間的函數(shù)關系式;
(2)如果要實現(xiàn)每天75元的銷售利潤,那么每支定價應為多少元?
(3)當每支定價為多少元時,可以使這種筆每天的銷售利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

有A、B兩枚均勻的小立方體(立方體的每個面上分別標有數(shù)字1,2,3,4,5,6),以小莉擲A立方體朝上的數(shù)字為x、小明擲B立方體朝上的數(shù)字為y來確定點P(x,y),那么他們各擲一次所確定的點P落在拋物線上的概率為(  )
A.           B.            C.             D.

查看答案和解析>>

同步練習冊答案