【題目】某兒童游樂園推出兩種門票收費方式:

方式一:購買會員卡,每張會員卡費用是元,憑會員卡可免費進園次,免費次數(shù)用完以后,每次進園憑會員卡只需元;

方式二:不購買會員卡,每次進園是(兩種方式每次進園均指單人)設進園次數(shù)為( 為非負整數(shù))

1)根據(jù)題意,填寫下表:

進園次數(shù)()

···

方式一收費()

···

方式二收費()

···

2)設方式一收費元,方式二收費元,分別寫出關于的函數(shù)關系式;;

3)當時,哪種進園方式花費少?請說明理由.

【答案】1;(2;(3)當時,方式一花費少,理由見解析.

【解析】

1)根據(jù)兩種收費方式分別列出等式計算即可;

2)根據(jù)收費方式,方式一分兩部分,方式二利用收費單次費用次數(shù)即可得;

3)結合題(2)的結論可得當時,關于x的函數(shù)表達式,再利用一次函數(shù)的性質求解即可得.

1)當時,方式二收費為(元)

時,方式一收費為(元)

時,方式二收費為(元)

故答案為:100,250,400;

2)由題意,當時,

時,

時,

關于x的函數(shù)關系式為,關于x的函數(shù)關系式為

3)方式一花費少,理由如下:

由(2)可知,當時,,

因為

所以的增大而減小

時,,即

因此,當時,

故當時,方式一花費少.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC,以AC為直徑的⊙OBC于點D,點EAC延長線上一點,且DE是⊙O的切線.

1)求證:∠CDE BAC;

2)若AB3BD,CE4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:拋物線yax+1)(x3)交x軸于A、C兩點,交y軸于B.且OB2CO

1)求點A、B、C的坐標及二次函數(shù)解析式;

2)在直線AB上方的拋物線上有動點E,作EGx軸交x軸于點G,交AB于點M,作EFAB于點F.若點M的橫坐標為m,求線段EF的最大值.

3)拋物線對稱軸上是否存在點P使得ABP為直角三角形,若存在請直接寫出點P的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E為對角線AC上一點,且AECB,連接DE并延長交BC于點G,過點AAHBE于點H,交BC于點F.以下結論:①BHHE;②∠BEG45°;③△ABF ≌△DCG; 4BH2BG·CD.其中正確結論的個數(shù)是( )

A.1B.2

C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線C1x軸的正半軸交于點A,點B為拋物線的頂點,直線l是一條動直線.

(1)求點A、點B的坐標;

(2)當直線l經(jīng)過點A時,求出直線l的解析式,并直接寫出此時當時,自變量x的取值范圍;

(3)如圖2,將拋物線C1x軸上方的部分沿x軸翻折,與C1x軸下方的圖形組合成一個新的圖形C2,當直線l與組合圖形C2有且只有兩個交點時,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會積極參與疫情防控工作,某市為了盡快完成100萬只口罩的生產(chǎn)任務,安排甲、乙兩個大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨立完成60萬只口罩的生產(chǎn)任務時,甲廠比乙廠少用5天.問至少應安排兩個工廠工作多少天才能完成任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,M、N分別是射線CB和射線DC上的動點,且始終∠MAN45°

1)如圖1,當點M、N分別在線段BCDC上時,請直接寫出線段BM、MN、DN之間的數(shù)量關系;

2)如圖2,當點M、N分別在CB、DC的延長線上時,(1)中的結論是否仍然成立,若成立,給予證明,若不成立,寫出正確的結論,并證明;

3)如圖3,當點M、N分別在CB、DC的延長線上時,若CNCD6,設BDAM的延長線交于點P,交ANQ,直接寫出AQ、AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的直徑AB10,弦BC,點PO上的一動點(不與點A、B重合,且與點C分別位于直徑AB的異側),連接PA,PC,過點CPC的垂線交PB的延長線于點D

1)求tanBPC的值;

2)隨著點P的運動,的值是否會發(fā)生變化?若變化,請說明理由,若不變,則求出它的值;

3)運動過程中,AP+2BP的最大值是多少?請你直接寫出它來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果基地為了選出適應市場需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個品種的小西紅柿秧苗各300株分別種植在甲、乙兩個大棚.對市場最為關注的產(chǎn)量和產(chǎn)量的穩(wěn)定性進行了抽樣調査,過程如下,請補充完整.

收集數(shù)據(jù) 從甲、乙兩個大棚各收集了25株秧苗上的小西紅柿的個數(shù):

26 32 40 51 44 74 44 63 73 74 81 54 62

41 33 54 43 34 51 63 64 73 64 54 33

27 35 46 55 48 36 47 68 82 48 57 66 75

27 36 57 57 66 58 61 71 38 47 46 71

整理數(shù)據(jù) 按如下分組整理、描述這兩組樣本數(shù)據(jù):

(說明:45個以下為產(chǎn)量不合格,45個及以上為產(chǎn)量合格,其中45~65個為產(chǎn)量良好,65~85個為產(chǎn)量優(yōu)秀)分析數(shù)據(jù) 組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:

大棚

平均數(shù)

眾數(shù)

方差

53

54

236.24

53

57

215.04

得出結論 a.估計甲大棚產(chǎn)量良好的秧苗數(shù)為________株;b.可以推斷出________大棚的小西紅柿秧苗品種更適應市場需求,理由為________________.(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

同步練習冊答案