【題目】如圖,點(diǎn)B、C、D、E在同一條直線上,已知AB = FC,AD = FE, BC=DE.
(1)求證:△ABD≌△FCE.
(2)AB與FC的位置關(guān)系是_________(請(qǐng)直接寫出結(jié)論)
【答案】(1)證明見解析;(2)AB∥FC.
【解析】
(1)由BC=DE,根據(jù)等式性質(zhì)在等號(hào)兩邊同時(shí)加上CD,得到BD=CE,又AB=FC,AD=FE,根據(jù)SSS可得△ABD≌△FCE;
(2)由全等三角形的對(duì)應(yīng)角相等可得一對(duì)同位角相等,根據(jù)同位角相等,兩直線平行即可得證.
(1)證明:∵BC=DE,
∴BC+CD=DE+CD,即BD=CE.
在△ABD和△FCE中,
∴△ABD≌△FCE (SSS)
(2)由(1)可知△ABD≌△FCE,
∴∠B=∠FCE(全等三角形的對(duì)應(yīng)角相等),
∴AB∥FC(同位角相等,兩直線平行).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點(diǎn)P從A點(diǎn)出發(fā)沿A→C→B路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B→C→A路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以每秒1cm和3cm的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止運(yùn)動(dòng),在某時(shí)刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設(shè)運(yùn)動(dòng)時(shí)間為t秒,則當(dāng)t=______秒時(shí),△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)P為AC上一點(diǎn),M為BC上一點(diǎn).
(1)若AM⊥BP于點(diǎn)E.
①如圖1,BP為△ABC的角平分線,求證:PA=PM;
②如圖2,BP為△ABC的中線,求證:BP=AM+MP.
(2)如圖3,若點(diǎn)N在AB上,AN=CP,AM⊥PN,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖1至圖3中,點(diǎn)B是線段AC的中點(diǎn),點(diǎn)D是CE的中點(diǎn),△BCF和△CDG都是等邊三角形,點(diǎn)M為AE的中點(diǎn),連接FG.
(1)如圖1,若點(diǎn)E在AC的延長(zhǎng)線上,點(diǎn)M與點(diǎn)C重合,則△FMG 等邊三角形(填“是”或“不是”)
(2)將圖1中的CE縮短,得到圖2.求證:△FMG為等邊三角形;
(3)將圖2中的CE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖3.求證:△FMG為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】6月14日是“世界獻(xiàn)血日”,某市采取自愿報(bào)名的方式組織市民義務(wù)獻(xiàn)血.獻(xiàn)血時(shí)要對(duì)獻(xiàn)血者的血型進(jìn)行檢測(cè),檢測(cè)結(jié)果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻(xiàn)血者人群中,隨機(jī)抽取了部分獻(xiàn)血者的血型結(jié)果進(jìn)行統(tǒng)計(jì),并根據(jù)這個(gè)統(tǒng)計(jì)結(jié)果制作了兩幅不完整的圖表:
血型 | A | B | AB | O |
人數(shù) |
| 10 | 5 |
|
(1)這次隨機(jī)抽取的獻(xiàn)血者人數(shù)為 人,m= ;
(2)補(bǔ)全上表中的數(shù)據(jù);
(3)若這次活動(dòng)中該市有3000人義務(wù)獻(xiàn)血,請(qǐng)你根據(jù)抽樣結(jié)果回答:
從獻(xiàn)血者人群中任抽取一人,其血型是A型的概率是多少?并估計(jì)這3000人中大約有多少人是A型血?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,連接AE,BD交于點(diǎn)O,AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.
(1)如圖1,猜想AE與BD的數(shù)量關(guān)系與位置關(guān)系,并加以證明.
(2)如圖2,若AC=DC,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中四對(duì)全等的直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路l經(jīng)過A、B兩個(gè)景點(diǎn),景區(qū)管委會(huì)又開發(fā)了風(fēng)景優(yōu)美的景點(diǎn)C.經(jīng)測(cè)量,C位于A的北偏東60°的方向上,C位于B的北偏東30°的方向上,且AB=10km.
(1)求景點(diǎn)B與C的距離;
(2)為了方便游客到景點(diǎn)C游玩,景區(qū)管委會(huì)準(zhǔn)備由景點(diǎn)C向公路l修一條距離最短的公路,不考慮其他因素,求出這條最短公路的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過P作PF⊥AD交BC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com