【題目】在△ABC中,∠ACB=90°,點D、E分別在邊BC、AC上,AC=3AE,∠CDE=45°(如圖),△DCE沿直線DE翻折,翻折后的點C落在△ABC內(nèi)部的點F,直線AF與邊BC相交于點G,如果BG=AE,那么tanB=_____.
【答案】
【解析】
設(shè)AE=k=BG,AC=3k,(k≠0),可得EC=2k,由折疊的性質(zhì)可得EF=EC=2k,∠FED=∠DEC=45°,根據(jù)相似三角形的性質(zhì)可得,即GC=3EF=6k,
則可求tanB的值.
解:如圖,
∵∠ACB=90°,∠CDE=45°,
∴∠DEC=45°
∵AC=3AE
∴設(shè)AE=k=BG,AC=3k,(k≠0)
∴EC=2k,
∵折疊
∴EF=EC=2k,∠FED=∠DEC=45°
∴∠FEC=90°,且∠ACB=90°
∴EF∥BC
∴△AEF∽△ACG
∴
∴GC=3EF=6k,
∴BC=BG+GC=7k,
∴tanB==
故答案為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最小?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求證:無論m取何值時,方程恒有實數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點間的距離為2時,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個圓柱體形零件,削去了占底面圓的四分之一部分的柱體(如圖),現(xiàn)已畫出了主視圖與俯視圖.
(1)請只用直尺和圓規(guī),將此零件的左視圖畫在規(guī)定的位置(不必寫作法,只須保留作圖痕跡);
(2)若此零件底面圓的半徑r=2cm,高h=3cm,求此零件的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點D為BC上一點,且AD=DC,過A,B,D三點作⊙O,AE是⊙O的直徑,連結(jié)DE.
(1)求證:AC是⊙O的切線;
(2)若sinC=,AC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解九年級學(xué)生體育測試情況,以九年級(1)班學(xué)生的體育測試成績?yōu)闃颖荆?/span>A,B,C,D四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)
(1)請把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中D級所在的扇形的圓心角度數(shù)是多少?
(3)若該校九年級有600名學(xué)生,請用樣本估計體育測試中A級學(xué)生人數(shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.
(1)如圖①,若∠P=35°,連OC,求∠BOC的度數(shù);
(2)如圖②,若D為AP的中點,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,已知⊙O的直徑為AB,AC⊥AB于點A, BC與⊙O相交于點D,在AC上取一點E,使得ED=EA.下面四個結(jié)論:①ED是⊙O的切線;②BC=2OE③△BOD為等邊三角形;④△EOD ∽ △CAD,正確的是( )
A. ①② B. ②④ C. ①②④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com