【題目】(閱讀)例題:在等腰三角形中,若,求的度數(shù).
點點同學(xué)在思考時是這樣分析的:,都可能是頂角或底角,因此需要進行分類.他認為畫“樹狀圖”可以幫我們不重復(fù),不遺漏地分類(如圖),據(jù)此可求出的度數(shù).
(解答)
由以上思路,可得的度數(shù)為__________;
(應(yīng)用)
將一個邊長為5,12,13的直角三角形拼上一個三角形后可以拼成一個等腰三角形,圖2就是其中的一種拼法.請你利用備用圖畫出三種可能的情形,使得拼成的等腰三角形腰長為13.
(注意:請對所拼成圖形中的線段長度標注數(shù)據(jù))
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已如,在平面直角坐標系中,點的坐標為、點的坐標為,點在軸上,作直線.點關(guān)于直線的對稱點剛好在軸上,連接.
(1)寫出一點的坐標,并求出直線對應(yīng)的函數(shù)表達式;
(2)點在線段上,連接、、,當(dāng)是等腰直角三角形時,求點坐標;
(3)如圖②,在(2)的條件下,點從點出發(fā)以每秒2個單位長度的速度向原點運動,到達點時停止運動,連接,過作的垂線,交軸于點,問點運動幾秒時是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙o的半徑是13,弦AB∥CD,AB=24,CD=10,則AB與CD的距離是( )
A.7 B.17 C.7或17 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(﹣1,5),點B的坐標為(﹣3,1).
(1)在平面直角坐標系中作線段AB關(guān)于y軸對稱的線段A1B1(A與A1,B與B1對應(yīng));
(2)求△AA1B1的面積;
(3)在y軸上存在一點P,使PA+PB的值最小,則點P的坐標為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點P為圓上一點,點C為AB延長線上一點,PA=PC,∠C=30°.
(1)求證:CP是⊙O的切線.
(2)若⊙O的直徑為8,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BC=5,AB=1,AB⊥BC,射線CM⊥BC,動點P在線段BC上(不與點B,C重合),過點P作DP⊥AP交射線CM于點D,連接AD.
(1)如圖1,若BP=4,判斷△ADP的形狀,并加以證明.
(2)如圖2,若BP=1,作點C關(guān)于直線DP的對稱點C′,連接AC′.
①依題意補全圖2;
②請直接寫出線段AC′的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:如圖(1)和圖(2)中,點P是平面內(nèi)一點,如果=2或=,稱點P是線段AB的強弱點.
(1)如圖2,在Rt△APB中,∠APB=90°,∠A=30°,問:點B是否是線段AP的強弱點?請說明理由;
(2)如圖3,在Rt△ABC中,∠ACB=90°,B是線段AC的強弱點(BA>BC),BD是Rt△ABC的角平分線,求證:點D是線段AC上的強弱點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com