【題目】如圖,我把對角線互相垂直的四邊形叫做“垂美四邊形”.
(1)性質探究:如圖1.已知四邊形ABCD中,AC⊥BD,垂足為O,求證:AB2+CD2=AD2+BC2.
(2)解決問題:已知AB=5,BC=4,分別以△ABC的邊BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.
①如圖2,當∠ACB=90°,連接PQ,求PQ;
②如圖3,當∠ACB≠90°,點M、N分別是AC、AP中點連接MN.若MN=,則S△ABC= .
【答案】(1)詳見解析;(2)①,②
【解析】
(1)利用勾股定理即可得出結論;
(2)①根據SAS可證明△PBC≌△ABQ,得∠BPC=∠BAQ,得∠PDA=90°,可求出PQ的長;
②連接PC、AQ交于點D,同①可證△PBC≌△ABQ,則AQ=PC且AQ⊥PC,由MN=2,可知AQ=PC=4.延長QB作AE⊥QE,求出BE的長,則答案可求出.
解:(1)證明:如圖中,
∵AC⊥BD,
∴∠AOD=∠AOB=∠BOC=∠COD=90°,
由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,
AB2+CD2=AO2+BO2+CO2+DO2,
∴AB2+CD2=AD2+BC2;
(2)①如圖,連接PC、AQ交于點D,
∵△ABP和△CBQ都是等腰直角三角形,
∴PB=AB,CB=BQ,∠ABP=∠CBQ=90°,
∴∠PBC=∠ABQ,
∴△PBC≌△ABQ(SAS),
∴∠BPC=∠BAQ,
又∵∠BPC+∠CPA+∠BAP=90°,
即∠BAQ+∠CPA+∠BAP=90°,
∴∠PDA=90°,
∴PC⊥AQ,
利用(1)中的結論:AP2+CQ2=AC2+PQ2
即(5)2+(4)2=32+PQ2;
∴PQ=.
②如圖,連接PC、AQ交于點D,
同①可證△PBC≌△ABQ(SAS),AQ=PC且AQ⊥PC,
∵M、N分別是AC、AP中點,
∴MN=,
∵MN=2,
∴AQ=PC=4.
延長QB作AE⊥QE,
則有AE2+BE2=25,AE2+QE2=48,
∵EQ=4+BE,
∴(4+BE)2﹣BE2=23,
解得BE=,
∴S△ABC=BC×BE==.
故答案為:.
科目:初中數學 來源: 題型:
【題目】在邊長為1的小正方形網格中,△AOB的頂點均在格點上.
(1)B點關于y軸的對稱點坐標為 ;
(2)將△AOB向左平移3個單位長度得到△A1O1B1,請畫出△A1O1B1;
(3)在(2)的條件下,A1的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某天下午,出租車司機小李始終在一條南北方向的商業(yè)大道上運營,如果規(guī)定向北為正方向,他記錄的出租車行車里程如下(單位:千米):,,,,,,,
()將最后一名乘客送到目的地時,小李在出車地點的什么方向?距離是多少?
()若出租車每千米耗油量為升,那么這天下午小李的出租車共耗油多少升?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知BC∥DE,BF平分∠ABC,DC平分∠ADE,則下列結論:①∠ACB=∠E;②DF平分∠ADC;③∠BFD=∠BDF;④∠ABF=∠BCD,其中正確的有( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將三角形ABC向左平移至點B與原點重合,得三角形A′OC′.
(1)直接寫出三角形ABC的三個頂點的坐標A ,B ,C ;
(2)畫出三角形A′OC′;
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在菱形ABCD中,M是BC邊上的點(不與B,C兩點重合),AB=AM,點B關于直線AM對稱的點是N,連接DN,設∠ABC,∠CDN的度數分別為,,則關于的函數解析式是_______________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,AB=4,BC=10,E是直線AD上任意一點(不與點A重合),點A關于直線BE的對稱點為A′,AA′所在直線與直線BC交于點F.
(1)如圖①,當點E在線段AD上時,①若△ABE ∽△DEC,求AE的長;
②設AE=x,BF=y,求y與x的函數表達式.
(2)線段DA′的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把Rt△ABC繞頂點C順時針旋轉90°得到Rt△DFC,若直線DF垂直平分AB,垂足為點E,連接BF,CE,且BC=2.下面四個結論:
①BF=;
②∠CBF=45°;
③∠CED=30°;
④△ECD的面積為,
其中正確的結論有_____.(填番號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(0,a),B(b,a),且a,b滿足(a﹣3)2+|b﹣6|=0,現同時將點A,B分別向下平移3個單位,再向左平移2個單位,分別得到點A,B的對應點C,D,連接AC,BD,AB.
(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點M,連接MC,MD,使S△MCD=S四邊形ABCD?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;
(3)點P是直線BD上的一個動點,連接PA,PO,當點P在BD上移動時(不與B,D重合),直接寫出∠BAP,∠DOP,∠APO之間滿足的數量關系.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com