【題目】某天下午,出租車司機(jī)小李始終在一條南北方向的商業(yè)大道上運(yùn)營(yíng),如果規(guī)定向北為正方向,他記錄的出租車行車?yán)锍倘缦拢▎挝唬呵祝?/span>,,,,,,,
()將最后一名乘客送到目的地時(shí),小李在出車地點(diǎn)的什么方向?距離是多少?
()若出租車每千米耗油量為升,那么這天下午小李的出租車共耗油多少升?
【答案】(1)南邊;2千米處;(2)16.4升
【解析】
(1)根據(jù)加法法則,將正數(shù)與正數(shù)相加,負(fù)數(shù)與負(fù)數(shù)相加,進(jìn)而得出計(jì)算得結(jié)果;
(2)利用絕對(duì)值的性質(zhì)以及有理數(shù)加法法則求出即可.
解:(1)(+11)+(-5)+(+18)+(+10)+(-6)+(+3)+(-18)+(-11)
=2,
答:將最后一名乘客送到目的地時(shí),小王離出車地點(diǎn)的距離是南邊2千米處;
(2)總行程為:
∵每千米耗油0.2升
∴82×0.2=16.4升.
答:這天下午汽車共耗油16.4升.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(0,a),B(0,b),C(m,b)且(a-4)2+ =0,
(1)求C點(diǎn)坐標(biāo)
(2)作DE DC,交y軸于E點(diǎn),EF為 AED的平分線,且DFE= 90o。 求證:FD平分ADO;
(3)E 在 y 軸負(fù)半軸上運(yùn)動(dòng)時(shí),連 EC,點(diǎn) P 為 AC 延長(zhǎng)線上一點(diǎn),EM 平分∠AEC,且 PM⊥EM,PN⊥x 軸于 N 點(diǎn),PQ 平分∠APN,交 x 軸于 Q 點(diǎn),則 E 在運(yùn)動(dòng)過(guò)程中,的大小是否發(fā)生變化,若不變,求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,E是AD上一點(diǎn),AE=AB,過(guò)點(diǎn)E作直線EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.
(1)如圖1,當(dāng)EF與AB相交時(shí),若∠EAB=60°,求證:EG=AG+BG;
(2)如圖2,當(dāng)EF與AB相交時(shí),若∠EAB=α(0°<α<90°),請(qǐng)你直接寫(xiě)出線段EG、AG、BG之間的數(shù)量關(guān)系(用含α的式子表示);
(3)如圖3,當(dāng)EF與CD相交時(shí),且∠EAB=90°,請(qǐng)你寫(xiě)出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知⊙O的半徑為1,PQ是⊙O的直徑,n個(gè)相同的正三角形沿PQ排成一列,所有正三角形都關(guān)于PQ對(duì)稱,其中第一個(gè)△A1B1C1的頂點(diǎn)A1與點(diǎn)P重合,第二個(gè)△A2B2C2的頂點(diǎn)A2是B1C1與PQ的交點(diǎn)……最后一個(gè)△AnBnCn的頂點(diǎn)Bn,Cn在圓上.
(1)如圖②,當(dāng)n=1時(shí),求正三角形的邊長(zhǎng)a1.
(2)如圖③,當(dāng)n=2時(shí),求正三角形的邊長(zhǎng)a2.
(3)如圖①,求正三角形的邊長(zhǎng)an(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
某些代數(shù)恒等式可用一些卡片拼成的圖形的面積來(lái)解釋.例如,圖①可以解釋,因此,我們可以利用這種方法對(duì)某些多項(xiàng)式進(jìn)行因式分解.
根據(jù)閱讀材料回答下列問(wèn)題:
(1)如圖②所表示的因式分解的恒等式是________________________.
(2)現(xiàn)有足夠多的正方形和長(zhǎng)方形卡片(如圖③),試畫(huà)出一個(gè)用若干張1號(hào)卡片、2號(hào)卡片和3號(hào)卡片拼成的長(zhǎng)方形(每?jī)蓮埧ㄆg既不重疊,也無(wú)空隙),使該長(zhǎng)方形的面積為,并利用你畫(huà)的長(zhǎng)方形的面積對(duì)進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面的統(tǒng)計(jì)圖反映了我國(guó)2013年到2017年國(guó)內(nèi)生產(chǎn)總值情況.(以上數(shù)據(jù)摘自國(guó)家統(tǒng)計(jì)局《中華人民共和國(guó)2017年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)》,其中國(guó)內(nèi)生產(chǎn)總值絕對(duì)數(shù)按現(xiàn)價(jià)計(jì)算,增長(zhǎng)速度按不變價(jià)格計(jì)算)
根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷合理的是
A.從2013-2017年,我國(guó)國(guó)內(nèi)生產(chǎn)總值逐年下降
B.從2013-2017年,我國(guó)國(guó)內(nèi)生產(chǎn)總值的增長(zhǎng)率逐年下降
C.從2013-2017年,我國(guó)國(guó)內(nèi)生產(chǎn)總值的平均增長(zhǎng)率約為6.7%
D.計(jì)算同上年相比的增量,2017年我國(guó)國(guó)內(nèi)生產(chǎn)總值的增量為近幾年最多
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有A、B兩種型號(hào)的客車,它們的載客量、每天的租金如表所示:
A型號(hào)客車 | B型號(hào)客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
已知某中學(xué)計(jì)劃租用A、B兩種型號(hào)的客車共10輛,同時(shí)送七年級(jí)師生到沙家參加社會(huì)實(shí)踐活動(dòng),已知該中學(xué)租車的總費(fèi)用不超過(guò)5600元.
(1)求最多能租用多少輛A型號(hào)客車?
(2)若七年級(jí)的師生共有380人,請(qǐng)寫(xiě)出所有可能的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我把對(duì)角線互相垂直的四邊形叫做“垂美四邊形”.
(1)性質(zhì)探究:如圖1.已知四邊形ABCD中,AC⊥BD,垂足為O,求證:AB2+CD2=AD2+BC2.
(2)解決問(wèn)題:已知AB=5,BC=4,分別以△ABC的邊BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.
①如圖2,當(dāng)∠ACB=90°,連接PQ,求PQ;
②如圖3,當(dāng)∠ACB≠90°,點(diǎn)M、N分別是AC、AP中點(diǎn)連接MN.若MN=,則S△ABC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是人字型金屬屋架的示意圖,該屋架由BC、AC、BA、AD四段金屬材料焊接而成,其中A、B、C、D四點(diǎn)均為焊接點(diǎn),且AB=AC,D為BC的中點(diǎn),假設(shè)焊接所需的四段金屬材料已截好,并已標(biāo)出BC段的中點(diǎn)D,那么,如果焊接工身邊只有可檢驗(yàn)直角的角尺,而又為了準(zhǔn)確快速地焊接,他應(yīng)該首先選取的兩段金屬材料及焊接點(diǎn)是( 。
A.AB和AD,點(diǎn)AB.AB和AC,點(diǎn)B
C.AC和BC, 點(diǎn)CD.AD和BC,點(diǎn)D
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com