【題目】如圖(1),有、、三種不同型號(hào)的卡片若干張,其中型是邊長為的正方形,型是長為、寬為的長方形,型是邊長為的正方形.

圖(1 圖(2

1)若用型卡片張,型卡片張,型卡片張拼成了一個(gè)正方形(如圖(2)),此正方形的邊長為_______,根據(jù)該圖形請(qǐng)寫出一條屬于因式分解的等式:_________;

2)若要拼一個(gè)長為,寬為的長方形,設(shè)需要類卡片張,類卡片張,類卡片張,則_______

3)現(xiàn)有型卡片張,型卡片張,型卡片張,從這張卡片中拿掉兩張卡片,余下的卡片全用上,你能拼出一個(gè)長方形或正方形嗎?有幾種拼法?請(qǐng)你通過運(yùn)算說明理由.

【答案】1a+b,a2+2ab+b2=(a+b2;(29;(3)(3)四種拼法,理由見解析.

【解析】

1)由圖可得可得正方形的邊長為a+b,由圖(2)可得因式分解的等式;

2)因?yàn)?/span>,所以需要用類卡片2張,類卡片5張,類卡片2張,即可求、對(duì)應(yīng)的值;

3)分類討論:第一種:型卡片拿掉1張,型卡片拿掉1張,則能拼出一個(gè)長方形,即長方形的長為,寬為;第二種:型卡片拿掉1張,型卡片拿掉1張,則能拼出一個(gè)長方形,即長方形的長為,寬為,此種情況有兩種;第三種:型卡片拿掉2張,則能拼出一個(gè)正方形方形,即正方形邊長為

1)由圖(1)和圖(2)可得正方形的邊長為:a+b

由圖(2)可得因式分解的等式a2+2ab+b2=(a+b2

故答案為a+ba2+2ab+b2=(a+b2;

22a+b)(a+2b)=2a2+5ab+2b2,

需要用A類卡片2張,B類卡片5張,C類卡片2張,

x+y+z2+5+29;

故答案為9

3)四種拼法:理由如下:

第一種:A型卡片拿掉1張,B型卡片拿掉1張,則能拼出一個(gè)長方形,即長方形的長為5a+11b,寬為b

第二種:A型卡片拿掉1張,C型卡片拿掉1張,則能拼出一個(gè)長方形,即長方形的長為3a+5b,寬為2b,

;

或者長為6a+10b,寬為b,

,此種情況共2種拼法;

第三種:C型卡片拿掉2張,則能拼出一個(gè)正方形方形,即正方形邊長為a+3b,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王和小張利用如圖所示的轉(zhuǎn)盤做游戲,轉(zhuǎn)盤的盤面被分為面積相等的4個(gè)扇形區(qū)域,且分別標(biāo)有數(shù)字1,2,3,4.游戲規(guī)則如下:兩人各轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,分別記錄指針停止時(shí)所對(duì)應(yīng)的數(shù)字,如兩次的數(shù)字都是奇數(shù),則小王勝;如兩次的數(shù)字都是偶數(shù),則小張勝;如兩次的數(shù)字是奇偶,則為平局.解答下列問題:

(1)小王轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤指針停止,對(duì)應(yīng)盤面數(shù)字為奇數(shù)的概率是多少?

(2)該游戲是否公平?請(qǐng)用列表或畫樹狀圖的方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,點(diǎn)F是射線DC上一動(dòng)點(diǎn)(不與CD重合).連接AF并延長交直線BC于點(diǎn)E,交BDH,連接CH,過點(diǎn)CCGHCAE于點(diǎn)G

1)若點(diǎn)F在邊CD上,如圖1

①證明:∠DAH=DCH;

②猜想:△GFC的形狀并說明理由.

2)取DF中點(diǎn)M,連接MG.若MG=2.5,正方形邊長為4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)將進(jìn)貨價(jià)為30元的臺(tái)燈以40元的價(jià)格售出,平均每月能售出600個(gè),經(jīng)調(diào)查表明,這種臺(tái)燈的售價(jià)每上漲1元,其銷量就減少10個(gè),市場(chǎng)規(guī)定此臺(tái)燈售價(jià)不得超過60元,為了實(shí)現(xiàn)銷售這種臺(tái)燈平均每月10000元的銷售利潤,售價(jià)應(yīng)定為多少元?這時(shí)售出臺(tái)燈多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.下面有三個(gè)推斷:某次實(shí)驗(yàn)投擲次數(shù)是500,計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,則該次試驗(yàn)“釘尖向上”的頻率是0.616;隨著實(shí)驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的概率一定是0.620.其中合理的是( 。

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=60°,過點(diǎn)C作CD∥AB,若∠ACD=60°,求證:△ABC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球每筒的售價(jià)多15元,健民體育活動(dòng)中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.

1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?

2)根據(jù)健民體育活動(dòng)中心消費(fèi)者的需求量,活動(dòng)中心決定用不超過2550元錢購進(jìn)甲、乙兩種羽毛球共50筒,那么最多可以購進(jìn)多少筒甲種羽毛球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盤錦市雙臺(tái)子區(qū)為了了解2016年初中畢業(yè)生畢業(yè)后的去向,對(duì)部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向:A.讀普通高中;B.讀職業(yè)高中C.直接進(jìn)入社會(huì)就業(yè);D.其它;進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(a)、(b).請(qǐng)問:

(1)該縣共調(diào)查了______名初中畢業(yè)生;

(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;

(3)若雙臺(tái)子區(qū)2016年初三畢業(yè)生共有4500人,請(qǐng)估計(jì)雙臺(tái)子區(qū)今年的初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).

(4)老師想從甲、乙、丙、丁4位同學(xué)中隨機(jī)選擇兩位同學(xué)了解他們畢業(yè)后的去向情況,請(qǐng)用樹狀圖或列表法求選中甲同學(xué)的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣(2m+1)x+m2+=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)若m為(1)中符合條件的最小正整數(shù),設(shè)此時(shí)對(duì)應(yīng)的一元二次方程的兩個(gè)實(shí)數(shù)根分別為α,β,求代數(shù)式的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案