【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、F,連接BDOF于點(diǎn)E

1)求證:OFBD;

2)若AB=DF=,求AD的長(zhǎng).

【答案】1)見(jiàn)解析;(2

【解析】

1)連接AF.根據(jù)直徑所對(duì)的圓周角是直角、等腰三角形的性質(zhì)以及平行線的性質(zhì)即可證明;
2)設(shè)AD=x.根據(jù)圓周角定理的推論和勾股定理進(jìn)行求解.

解:(1)證明:連接AF,如圖所示:

AB是⊙O的直徑,

∴∠AFB=ADB=90°,

AB=AC,

FC=FB

OA=OB,

ODAC

∴∠OEB=ADB=90°,

OFBD

2)設(shè)AD=x,

OFBD,

∴可得OFBD的中垂線,

FD=FB,

∴∠1=2,

BF=DF=,

OFDB,

ED=EB

OE=AD=,FE=OFOE=,

RtFEB中,BE2=EB2FE2=;

RtOFB中,BE2=OB2OE2=;

=

解得:x=

AD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程

1)求證:無(wú)論取何實(shí)數(shù),方程總有兩個(gè)不相等的實(shí)數(shù)根;

2)若方程的一個(gè)根是3,求的值及方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于氣溫,有的地方用攝氏溫度表示,有的地方用華氏溫度表示,攝氏溫度與華氏溫度之間是一次函數(shù)關(guān)系.如圖所示是一個(gè)家用溫度表的表盤、其左邊為攝氏溫度的刻度和讀數(shù)(單位),右邊為華氏溫度的刻度和讀數(shù)(單位).從溫度計(jì)的刻度上可以看出,攝氏溫度與華氏溫度部分對(duì)應(yīng)關(guān)系如下表:

···

···

···

···

1)求之間的函數(shù)關(guān)系式;

2)當(dāng)攝氏溫度為零下時(shí),求華氏溫度為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O,直徑AC與弦BD的交點(diǎn)為E,OBCDBHAC,垂足為H,且∠BFA=∠DBC

1)求證:BFO的切線;

2)若BH3,求AD的長(zhǎng)度;

3)若sinDAC,求△OBH的面積與四邊形OBCD的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD邊長(zhǎng)為4,E、F、G、H分別是ABBC、CD、DA上的點(diǎn),且AEBFCGDH.設(shè)AE兩點(diǎn)間的距離為x,四邊形EFGH的面積為y,則yx的函數(shù)圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)

根據(jù)所給信息,解答以下問(wèn)題:

(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是   度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在   等級(jí);

(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一帶一路倡議提出五年多來(lái),交通、通信、能源等各項(xiàng)相關(guān)建設(shè)取得積極進(jìn)展,也為增進(jìn)各國(guó)民眾福祉提供了新的發(fā)展機(jī)遇.下圖是2017一年一路沿線部分國(guó)家的通信設(shè)施現(xiàn)狀統(tǒng)計(jì)圖.

根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷合理的是( ).

A.互聯(lián)網(wǎng)服務(wù)器擁有個(gè)數(shù)最多的國(guó)家是阿聯(lián)酋

B.寬帶用戶普及率的中位數(shù)是11.05%

C.8個(gè)國(guó)家的電話普及率能夠達(dá)到平均每人1

D.只有俄羅斯的三項(xiàng)指標(biāo)均超過(guò)了相應(yīng)的中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將拋物線向右平移個(gè)單位,再向上平移個(gè)單位,得到拋物線,直線的一個(gè)交點(diǎn)記為,與的一個(gè)交點(diǎn)記為,點(diǎn)的橫坐標(biāo)是,點(diǎn)在第一象限內(nèi).

1)求點(diǎn)的坐標(biāo)及的表達(dá)式;

2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線,垂足為,在的右側(cè)作正方形

①當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),直線恰好經(jīng)過(guò)正方形的頂點(diǎn),求此時(shí)的值;

②在點(diǎn)的運(yùn)動(dòng)過(guò)程中,若直線與正方形始終沒(méi)有公共點(diǎn),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)在第一象限的圖象如圖所示,過(guò)上任意一點(diǎn),作軸垂線交于點(diǎn),交軸于點(diǎn),作軸垂線,交于點(diǎn),交軸于點(diǎn),直線分別交軸,軸于點(diǎn),則__________

查看答案和解析>>

同步練習(xí)冊(cè)答案