【題目】已知:如圖,AB為⊙O的直徑,PA,PC是⊙O的切線,A,C為切點(diǎn),∠BAC=30°.
(1)求∠P的大小;
(2)若AB=6,求PA的長(zhǎng).
【答案】
(1)解:∵PA是⊙O的切線,AB為⊙O的直徑,
∴PA⊥AB,即∠PAB=90°.
∵∠BAC=30°,
∴∠PAC=90°﹣30°=60°.
又∵PA、PC切⊙O于點(diǎn)A、C,
∴PA=PC,
∴△PAC是等邊三角形,
∴∠P=60°
(2)解:如圖,連接BC.
∵AB是直徑,∠ACB=90°,
∴在Rt△ACB中,AB=6,∠BAC=30°,
可得AC=ABcos∠BAC=6×cos30°=3 .
又∵△PAC是等邊三角形,
∴PA=AC=3 .
【解析】(1)由圓的切線的性質(zhì),得∠PAB=90°,結(jié)合∠BAC=30°得∠PAC=90°﹣30°=60°.由切線長(zhǎng)定理得到PA=PC,得△PAC是等邊三角形,從而可得∠P=60°.(2)連接BC,根據(jù)直徑所對(duì)的圓周角為直角,得到∠ACB=90°,結(jié)合Rt△ACB中AB=6且∠BAC=30°,得到AC=ABcos∠BAC=3 .最后在等邊△PAC中,可得PA=AC=3 .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用切線的性質(zhì)定理的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)布口袋里裝有紅色、黑色、藍(lán)色和白色的小球各1個(gè),如果閉上眼睛隨機(jī)地從布袋中取出一個(gè)球,記下顏色,放回布袋攪勻,再閉上眼睛隨機(jī)的再?gòu)牟即腥〕鲆粋(gè)球.求:
(1)連續(xù)兩次恰好都取出紅色球的概率;
(2)連續(xù)兩次恰好取出一紅、一黑的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角三角形紙片ABC中,∠ACB=90°,AC≤BC,如圖,將紙片沿某條直線折疊,使點(diǎn)A落在直角邊BC上,記落點(diǎn)為D,設(shè)折痕與AB、AC邊分別交于點(diǎn)E、F.
(1)如果∠AFE=65°,求∠CDF的度數(shù);
(2)若折疊后的△CDF與△BDE均為等腰三角形,那么紙片中∠B的度數(shù)是多少?寫(xiě)出你的計(jì)算過(guò)程,并畫(huà)出符合條件的折疊后的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,定義點(diǎn)P(x,y)的變換點(diǎn)為P′(x+y,x﹣y).
(1)如圖1,如果⊙O的半徑為2 ,
①請(qǐng)你判斷M(2,0),N(﹣2,﹣1)兩個(gè)點(diǎn)的變換點(diǎn)與⊙O的位置關(guān)系;
②若點(diǎn)P在直線y=x+2上,點(diǎn)P的變換點(diǎn)P′在⊙O的內(nèi),求點(diǎn)P橫坐標(biāo)的取值范圍.
(2)如圖2,如果⊙O的半徑為1,且P的變換點(diǎn)P′在直線y=﹣2x+6上,求點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為[x].即當(dāng)n為非負(fù)整數(shù)時(shí),若n﹣ ≤x<n+ ,則[x]=n.如:[3.4]=3,[3.5]=4,…根據(jù)以上材料,解決下列問(wèn)題:
(1)填空:
①若[x]=3,則x應(yīng)滿足的條件:________;
②若[3x+1]=3,則x應(yīng)滿足的條件:________;
(2)求滿足[x]= x﹣1的所有非負(fù)實(shí)數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B的坐標(biāo)分別為(0,2),(1,0),直線y=﹣3與坐標(biāo)軸交于C、D兩點(diǎn).
(1)求直線AB:y=kx+b與CD交點(diǎn)E的坐標(biāo);
(2)直接寫(xiě)出不等式kx+b>﹣3的解集;
(3)求四邊形OBEC的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=6cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是6cm,則∠AOB的度數(shù)是( 。
A. 25° B. 30° C. 35° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長(zhǎng)AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,在坡頂A處測(cè)得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,E、F分別為線段AC上的兩個(gè)點(diǎn),且DE⊥AC于點(diǎn)E,BF⊥AC于點(diǎn)F,若AB=CD,AE=CF,BD交AC于點(diǎn)M.
(1)試猜想DE與BF的關(guān)系,并證明你的結(jié)論;
(2)求證:MB=MD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com