【題目】如圖,已知直線lyx,過點(diǎn)A11,0)作x軸的垂線交直線l于點(diǎn)B1,以A1B1為邊作正方形A1B1C1A2,過點(diǎn)A2x軸的垂線交直線l于點(diǎn)B2,以A2B2為邊作正方形A2B2C2A3,…;則點(diǎn)A5的坐標(biāo)為_____,點(diǎn)Cn的坐標(biāo)為_____

【答案】16,0 2n2n1

【解析】

先根據(jù)一次函數(shù)方程式求出B1點(diǎn)的坐標(biāo),再根據(jù)B1點(diǎn)的坐標(biāo)求出A2、C1的坐標(biāo),以此類推總結(jié)規(guī)律便可求出點(diǎn)A5、Cn的坐標(biāo).

解:直線yx,點(diǎn)A1坐標(biāo)為(1,0),過點(diǎn)A1x軸的垂線交直線于點(diǎn)B1,可知B1點(diǎn)的坐標(biāo)為(11),

A1 B1為邊作正方形A1B1C1A2,A1B1A1A21,

OA21+12,點(diǎn)A2的坐標(biāo)為(20),C1的坐標(biāo)為(2,1),

這種方法可求得B2的坐標(biāo)為(2,2),故點(diǎn)A3的坐標(biāo)為(4,0),C2的坐標(biāo)為(42),

此類推便可求出點(diǎn)點(diǎn)A5的坐標(biāo)為(16,0),點(diǎn)n的坐標(biāo)為(2n,2n1).

故答案為(16,0),(2n,2n1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一工程,在工程招標(biāo)時(shí),接到甲、乙兩個(gè)工程隊(duì)的投標(biāo)書.施工一天,需付甲工程隊(duì)工程款1.2萬元,乙工程隊(duì)工程款0.5萬元.工程領(lǐng)導(dǎo)小組根據(jù)甲、乙兩隊(duì)的投標(biāo)書測算,有如下方案:

1)甲隊(duì)單獨(dú)完成這項(xiàng)工程剛好如期完成;

2)乙隊(duì)單獨(dú)完成這項(xiàng)工程要比規(guī)定日期多用6天;

3)若甲、乙兩隊(duì)合作3天,余下的工程由乙隊(duì)單獨(dú)做也正好如期完成.

試問:(1)規(guī)定日期是多少天?

(2)在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,分別與相切于,,三點(diǎn),過點(diǎn)的切線交于點(diǎn),切點(diǎn)為,則的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=﹣x+2的圖象與x軸,y軸分別交于點(diǎn)AB,與函數(shù)yx+b的圖象交于點(diǎn)C(﹣2,m).

1)求mb的值;

2)函數(shù)yx+b的圖象與x軸交于點(diǎn)D,點(diǎn)E從點(diǎn)D出發(fā)沿DA方向,以每秒2個(gè)單位長度勻速運(yùn)動到點(diǎn)A(到A停止運(yùn)動).設(shè)點(diǎn)E的運(yùn)動時(shí)間為t秒.

①當(dāng)ACE的面積為12時(shí),求t的值;

②在點(diǎn)E運(yùn)動過程中,是否存在t的值,使ACE為直角三角形?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,∠BAC90°,點(diǎn)D是直線AB上的一動點(diǎn)(不和AB重合),BECDE,交直線ACF

1)點(diǎn)D在邊AB上時(shí),試探究線段BDABAF的數(shù)量關(guān)系,并證明你的結(jié)論;

2)點(diǎn)DAB的延長線上時(shí),試探究線段BDABAF的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知頂點(diǎn)為(-3,-6)的拋物線經(jīng)過點(diǎn)(-1,-4),下列結(jié)論中錯(cuò)誤的是(

A.

B. 若點(diǎn)(-2, ),(-5, ) 在拋物線上,則

C.

D. 關(guān)于的一元二次方程的兩根為-5-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在以為原點(diǎn)的平面直角坐標(biāo)系中,拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),連接,,直線過點(diǎn)且平行于軸,

求拋物線對應(yīng)的二次函數(shù)的解析式;

為拋物線上一動點(diǎn),是否存在直線使得點(diǎn)到直線的距離與的長恒相等?若存在,求出此時(shí)的值;

如圖,若、為上述拋物線上的兩個(gè)動點(diǎn),且,線段的中點(diǎn)為,求點(diǎn)縱坐標(biāo)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖等邊,以為直徑的點(diǎn),交,,下列結(jié)論正確的是:________中點(diǎn);②;的切線;④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織優(yōu)質(zhì)課大賽活動,經(jīng)過評比有兩名男教師和兩名女教師獲得一等獎(jiǎng),學(xué)校將從這四名教師中隨機(jī)挑選兩位教師參加市教育局組織的決賽,挑選的兩位教師恰好是一男一女的概率為____

查看答案和解析>>

同步練習(xí)冊答案