【題目】已知:在△ABC中,AC=BC,∠ACB=90°,過點(diǎn)C作CD⊥AB于點(diǎn)D,點(diǎn)E是AB邊上一動點(diǎn)(不含端點(diǎn)A、B),連接CE,過點(diǎn)B作CE的垂線交直線CE于點(diǎn)F,交直線CD于點(diǎn)G(如圖①).
(1)求證:AE=CG;
(2)若點(diǎn)E運(yùn)動到線段BD上時(shí)(如圖②),試猜想AE、CG的數(shù)量關(guān)系是否發(fā)生變化,請直接寫出你的結(jié)論;
(3)過點(diǎn)A作AH垂直于直線CE,垂足為點(diǎn)H,并交CD的延長線于點(diǎn)M(如圖③),找出圖中與BE相等的線段,并證明.
【答案】
(1)解:∵AC=BC,
∴∠ABC=∠CAB.
∵∠ACB=90°,
∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.
∵BF⊥CE,
∴∠BFC=90°,
∴∠CBF+∠BCE=90°,
∴∠ACE=∠CBF
∵在RT△ABC中,CD⊥AB,AC=BC,
∴∠BCD=∠ACD=45°
∴∠A=∠BCD.
在△BCG和△ACE中
,
∴△BCG≌△ACE(ASA),
∴AE=CG
(2)解:不變.AE=CG.
理由:∵AC=BC,
∴∠ABC=∠CAB.
∵∠ACB=90°,
∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.
∵BF⊥CE,
∴∠BFC=90°,
∴∠CBF+∠BCE=90°,
∴∠ACE=∠CBF
∵在RT△ABC中,CD⊥AB,AC=BC,
∴∠BCD=∠ACD=45°
∴∠A=∠BCD.
在△BCG和△ACE中
,
∴△BCG≌△ACE(ASA),
∴AE=CG
(3)解:BE=CM,
:∵AC=BC,
∴∠ABC=∠CAB.
∵∠ACB=90°,
∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.
∵AH⊥CE,
∴∠AHC=90°,
∴∠HAC+∠ACE=90°,
∴∠BCE=∠HAC.
∵在RT△ABC中,CD⊥AB,AC=BC,
∴∠BCD=∠ACD=45°
∴∠ACD=∠ABC.
在△BCE和△CAM中
,
∴△BCE≌△CAM(ASA),
∴BE=CM
【解析】(1)要證AE=CG,需證它們所在的三角形全等,據(jù)等腰直角三角形的性質(zhì)可以得出∠BCD=∠ACD=45°,根據(jù)直角三角形的三角形的性質(zhì)就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE;(2)借鑒(1)的思路方法,仍運(yùn)用全等法,根據(jù)等腰直角三角形的性質(zhì)可以得出∠BCD=∠ACD=45°,根據(jù)直角三角形的三角形的性質(zhì)就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出結(jié)論;(3)借鑒(2)的思路,根據(jù)等腰直角三角形的性質(zhì)可以得出∠BCD=∠ACD=45°,根據(jù)直角三角形的三角形的性質(zhì)就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出結(jié)論;F,交直線CD于點(diǎn)G.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與計(jì)算:
在△ABC中,BE⊥AC于點(diǎn)E,CD⊥AB于點(diǎn)D,連接DE.
(1)如圖1,若∠A=45°,AB=AC,BC=4,求DE的長.
(2)如圖2,若∠A=60°,AB與AC不相等,BC=4,求DE的長.
猜想與證明:
(3)根據(jù)(1)(2)所求出的結(jié)果,猜想DE、BC以及∠A之間的數(shù)量關(guān)系,并證明.
拓展與應(yīng)用:
(4)如圖3,在△ABC中,AB=BC=5,AC=2,BE⊥AC于點(diǎn)E,CD⊥AB于點(diǎn)D,AF⊥BC于點(diǎn)F,求△DEF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在BC、AB、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);
(3)△DEF可能是等腰直角三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB以O(shè)為圓心,以任意長為半徑作弧,分別交OA、OB于F、E兩點(diǎn),再分別以E、F為圓心,大于 EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線OP,過點(diǎn)F作FD∥OB交OP于點(diǎn)D.
(1)若∠OFD=116°,求∠DOB的度數(shù);
(2)若FM⊥OD,垂足為M,求證:△FMO≌△FMD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計(jì)算正確的是( )
A.x4x2=x8
B.(x4y3)2=x4y5
C.6x23xy=18x3y
D.a4+a7=a11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用科學(xué)記數(shù)法表示(4×102)×(15×105)的計(jì)算結(jié)果是( 。
A.60×107
B.6.0×106
C.6.0×108
D.6.0×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下了各式運(yùn)算正確的是( )
A.2(a﹣1)=2a﹣1
B.a2b﹣ab2=0
C.2a3﹣3a3=a3
D.a2+a2=2a2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com