【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,經(jīng)過(guò)點(diǎn)O的直線(xiàn)l將四邊形分成兩部分,直線(xiàn)l與OC所成的角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線(xiàn)l折疊,點(diǎn)C落在點(diǎn)D處,我們把這個(gè)操作過(guò)程記為FZ [θ,a ]
(理解)若點(diǎn)D與點(diǎn)A重合,則這個(gè)操作過(guò)程為FZ [45°,3];
(嘗試)
(1)若點(diǎn)D恰為AB的中點(diǎn)(如圖2),求θ;
(2)經(jīng)過(guò)FZ[45°,a]操作,點(diǎn)B落在點(diǎn)E處,若點(diǎn)E在四邊形OABC的邊AB上(如圖3),求出a的值;若點(diǎn)E落在四邊形OABC的外部,直接寫(xiě)出a的取值范圍.
【答案】(1)30°;(2)答案見(jiàn)解析.
【解析】
(1)先根據(jù)ASA定理得出△BCD≌△AFD ,故可得出CD= FD ,即點(diǎn)D為Rt△COF斜邊CF的中點(diǎn),由折疊可知,OD= OC,故OD= OC= CD,△OCD為等邊三角形,∠COD = 60°,根據(jù)等邊三角形三線(xiàn)合一的性質(zhì)可得出結(jié)論;
(2)根據(jù)點(diǎn)E在四邊形OABC的邊AB上可知AB⊥直線(xiàn)l,根據(jù)由折疊可知,OD=OC=3,DE= BC=2.再由θ= 45°, AB⊥直線(xiàn)l,得出△ADE為等腰直角三角形,故可得出OA的長(zhǎng),由此可得出結(jié)論.
(1)連接CD并延長(zhǎng),交0A延長(zhǎng)線(xiàn)于點(diǎn)F,在△BCD與△AFD中,,∴ △BCD≌△AFD(ASA)∴CD= FD,即點(diǎn)D為Rt△COF斜邊CF的中點(diǎn),∴OD=CF=CD,又由折疊可知,OD=OC,∴OD=OC=CD,∴△OCD為等邊三角形,∠COD=60°,∴θ=∠COD=30°;
(2)∵點(diǎn)E在四邊形OABC的邊AB上,∴AB⊥直線(xiàn)l,由折疊可知,OD=OC=3,DE=BC=2,∵θ=45°,AB⊥直線(xiàn)l,∴△ADE為等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5,由圖可知,當(dāng)0<a<5時(shí),點(diǎn)E落在四邊形OABC的外部.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+c(a≠0)與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,C兩點(diǎn)(點(diǎn)C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4.現(xiàn)將拋物線(xiàn)沿BA方向平移,平移后的拋物線(xiàn)經(jīng)過(guò)點(diǎn)C時(shí),與x軸的另一交點(diǎn)為E,其頂點(diǎn)為F,對(duì)稱(chēng)軸與x軸的交點(diǎn)為H.
(1)求a,c的值;
(2)連結(jié)OF,試判斷△OEF是否為等腰三角形,并說(shuō)明理由;
(3)現(xiàn)將一足夠大的三角板的直角頂點(diǎn)Q放在射線(xiàn)AF或射線(xiàn)HF上,一直角邊始終過(guò)點(diǎn)E,另一直角邊與y軸相交于點(diǎn)P,是否存在這樣的點(diǎn)Q,使以點(diǎn)P,Q,E為頂點(diǎn)的三角形與△POE全等?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)經(jīng)過(guò)坐標(biāo)原點(diǎn)O,點(diǎn)A(6,﹣6 ),且以y軸為對(duì)稱(chēng)軸.
(1)求拋物線(xiàn)的解析式;
(2)如圖2,過(guò)點(diǎn)B(0,﹣ )作x軸的平行線(xiàn)l,點(diǎn)C在直線(xiàn)l上,點(diǎn)D在y軸左側(cè)的拋物線(xiàn)上,連接DB,以點(diǎn)D為圓心,以DB為半徑畫(huà)圓,⊙D與x軸相交于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)),連接CN,當(dāng)MN=CN時(shí),求銳角∠MNC的度數(shù);
(3)如圖3,在(2)的條件下,平移直線(xiàn)CN經(jīng)過(guò)點(diǎn)A,與拋物線(xiàn)相交于另一點(diǎn)E,過(guò)點(diǎn)A作x軸的平行線(xiàn)m,過(guò)點(diǎn)(﹣3,0)作y軸的平行線(xiàn)n,直線(xiàn)m與直線(xiàn)n相交于點(diǎn)S,點(diǎn)R在直線(xiàn)n上,點(diǎn)P在EA的延長(zhǎng)線(xiàn)上,連接SP,以SP為邊向上作等邊△SPQ,連接RQ,PR,若∠QRS=60°,線(xiàn)段PR的中點(diǎn)K恰好落在拋物線(xiàn)上,求Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個(gè)動(dòng)點(diǎn),把△EBF沿EF折疊,點(diǎn)B落在B′處.若△CDB′恰為等腰三角形,則DB′的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)求證:AB=AC;
(2)已知S△ABC=40cm2,如圖2,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線(xiàn)段BA向點(diǎn)A 運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線(xiàn)段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止. 設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點(diǎn)E是邊AC的中點(diǎn),問(wèn)在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了錯(cuò)題,從下列四個(gè)條件:
①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個(gè)作為補(bǔ)充條件,使ABCD為正方形(如圖所示),現(xiàn)有如下四種選法,你認(rèn)為其中錯(cuò)誤的是( 。
A. ①② B. ①③ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點(diǎn)E是邊AB上的動(dòng)點(diǎn),點(diǎn)F是射線(xiàn)CD上一點(diǎn),射線(xiàn)ED和射線(xiàn)AF交于點(diǎn)G,且∠AGE=∠DAB.
(1)求線(xiàn)段CD的長(zhǎng);
(2)如果△AEC是以EG為腰的等腰三角形,求線(xiàn)段AE的長(zhǎng);
(3)如果點(diǎn)F在邊CD上(不與點(diǎn)C、D重合),設(shè)AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4 ,點(diǎn)P為線(xiàn)段BE延長(zhǎng)線(xiàn)上一點(diǎn),連接CP以CP為直角邊向下作等腰直角△CPD,線(xiàn)段BE與CD相交于點(diǎn)F
(1)求證: ;
(2)連接BD,請(qǐng)你判斷AC與BD有什么位置關(guān)系?并說(shuō)明理由;
(3)設(shè)PE=x,△PBD的面積為S,求S與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線(xiàn)AC與BD交于點(diǎn)O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.
(1)求tan∠DBC的值;
(2)求證:四邊形OBEC是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com