【題目】如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點(diǎn)D,使AD=BC,作AD的垂直平分線,交AC邊于點(diǎn)F,交以AB為直徑的⊙O于G,H,設(shè)BC=x.
(1)求證:四邊形AGDH為菱形;
(2)若EF=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式;
(3)連結(jié)OF,CG.
①若△AOF為等腰三角形,求⊙O的面積;
②若BC=3,則CG+9=______.(直接寫出答案).
【答案】(1)證明見解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.
【解析】
(1)根據(jù)線段的垂直平分線的性質(zhì)以及垂徑定理證明AG=DG=DH=AH即可;
(2)只要證明△AEF∽△ACB,可得解決問(wèn)題;
(3)①分三種情形分別求解即可解決問(wèn)題;
②只要證明△CFG∽△HFA,可得=,求出相應(yīng)的線段即可解決問(wèn)題;
(1)證明:∵GH垂直平分線段AD,
∴HA=HD,GA=GD,
∵AB是直徑,AB⊥GH,
∴EG=EH,
∴DG=DH,
∴AG=DG=DH=AH,
∴四邊形AGDH是菱形.
(2)解:∵AB是直徑,
∴∠ACB=90°,
∵AE⊥EF,
∴∠AEF=∠ACB=90°,
∵∠EAF=∠CAB,
∴△AEF∽△ACB,
∴,
∴,
∴y=x2(x>0).
(3)①解:如圖1中,連接DF.
∵GH垂直平分線段AD,
∴FA=FD,
∴當(dāng)點(diǎn)D與O重合時(shí),△AOF是等腰三角形,此時(shí)AB=2BC,∠CAB=30°,
∴AB=,
∴⊙O的面積為π.
如圖2中,當(dāng)AF=AO時(shí),
∵AB==,
∴OA=,
∵AF==,
∴=,
解得x=4(負(fù)根已經(jīng)舍棄),
∴AB=,
∴⊙O的面積為8π.
如圖2﹣1中,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),設(shè)AE=x,則BC=AD=2x,AB=,
∵△ACE∽△ABC,
∴AC2=AEAB,
∴16=x,
解得x2=2﹣2(負(fù)根已經(jīng)舍棄),
∴AB2=16+4x2=8+8,
∴⊙O的面積=πAB2=(2+2)π
綜上所述,滿足條件的⊙O的面積為π或8π或(2+2)π;
②如圖3中,連接CG.
∵AC=4,BC=3,∠ACB=90°,
∴AB=5,
∴OH=OA=,
∴AE=,
∴OE=OA﹣AE=1,
∴EG=EH==,
∵EF=x2=,
∴FG=﹣,AF==,AH==,
∵∠CFG=∠AFH,∠FCG=∠AHF,
∴△CFG∽△HFA,
∴,
∴,
∴CG=﹣,
∴CG+9=4.
故答案為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣出500件,而且定價(jià)每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過(guò)批發(fā)價(jià)的2.5倍.
(1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣出________件;
(2)如果商店要實(shí)現(xiàn)每天800元的銷售利潤(rùn),那該如何定價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)圖象的對(duì)稱軸是x+3=0,圖象經(jīng)過(guò)(1,﹣6),且與y軸的交點(diǎn)為(0,).
(1)求這個(gè)二次函數(shù)的解析式;
(2)當(dāng)x為何值時(shí),這個(gè)函數(shù)的函數(shù)值為0;
(3)當(dāng)x在什么范圍內(nèi)變化時(shí),這個(gè)函數(shù)的函數(shù)值y隨x的增大而增大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,sinA=,BC=8,點(diǎn)D是AB的中點(diǎn),過(guò)點(diǎn)B作CD的垂線,垂足為點(diǎn)E.
(1)求線段CD的長(zhǎng);
(2)求cos∠ABE的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過(guò)點(diǎn)A(1,3).
(1)求此拋物線的表達(dá)式;
(2)如果點(diǎn)A關(guān)于該拋物線對(duì)稱軸的對(duì)稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到矩形AB′C′D′,點(diǎn) C的對(duì)應(yīng)點(diǎn) C′恰好落在CB的延長(zhǎng)線上,邊AB交邊 C′D′于點(diǎn)E.
(1)求證:BC=BC′;
(2)若 AB=2,BC=1,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一次測(cè)繪活動(dòng)中,某同學(xué)站在點(diǎn)A處觀測(cè)停放于B、C兩處的小船,測(cè)得船B在點(diǎn)A北偏東75°方向150米處,船C在點(diǎn)A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一勞動(dòng)節(jié)大酬賓!”,某商場(chǎng)設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.
(1)該顧客至多可得到________元購(gòu)物券;
(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖AB是半圓的直徑,圖1中,點(diǎn)C在半圓外;圖2中,點(diǎn)C在半圓內(nèi),請(qǐng)僅用無(wú)刻度的直尺按要求畫圖.
(1)在圖1中,畫出△ABC的三條高的交點(diǎn);
(2)在圖2中,畫出△ABC中AB邊上的高.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com