如圖所示,AB是⊙O的弦,半徑OC、OD分別交AB于點E、F,且AE=BF,請用三種不同的方法證明:OE=OF.
分析:證法一:連接OA、OB,證明三角形全等即可;
證法二:過O作AB的弦心距,利用垂徑定理證明即可;
證法三:延長CO、DO與圓交于G、H,利用相交弦定理.
解答:解:法一:
連接OA、OB,如圖示,
∵OA=OB,
∴∠OAE=∠OBF,
又AE=BF,
∴△AOE≌△BOF(SAS),
∴OE=OF;

法二:
作OM⊥AB于M,
∵OM⊥AB,
∴AM=BM,∠EMO=∠FMO=90°,
∵AE=BF,
∴EM=FM,
又OM=OM,
∴△OEM≌△OFM,
∴OE=OF;

法三:
延長CO、DO與圓交于G、H,
由相交弦定理知,
AE•BE=CE•EG,
BF•AF=DF•HF,
∵AE=BF,
∴AF=BE,
∴CE=DF,
∴OE=OF.
點評:本題綜合考查了垂徑定理、相交弦定理以及全等三角形的判定,熟記定理并靈活應(yīng)用定理是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A.
(1)求證:BC與⊙O相切;
(2)若OC∥AD,OC交BD于點E,BD=6,CE=4,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A,OC⊥BD于點E.
(1)求證:BC是⊙O的切線;
(2)若BD=12,EC=10,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,弦CD⊥AB于點P,CD=10cm,AP:PB=1:5,則⊙O的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O直徑,OD⊥弦BC于點F,且交⊙O于點E,且∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關(guān)系,并給出證明;
(2)當AB=10,BC=8時,求△DFB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,AB是⊙O直徑,∠D=35°,則∠BOC等于( 。

查看答案和解析>>

同步練習冊答案