【題目】在是斜邊上的中線,將 沿直線CM 折疊,點 A 落在點 D 處,如果CD 恰好與 AB 垂直,那么∠A 等于________度.
【答案】30
【解析】
先根據折疊的性質得∠1=∠2,由CM為直角△ABC斜邊上的中線,根據直角三角形斜邊上的中線性質得MA=MC=MB,則∠1=∠A,根據三角形外角性質得∠3=∠1+∠A=2∠1=2∠2,再由CD⊥AB得到∠3+∠2=90°,根據三角形內角和定理可計算出∠2=30°,即可得到結果.
解:如圖,
∵△ABC的中線CM將△CMA折疊,使點A落在點D處,
∴∠1=∠2,
∵CM為直角△ABC斜邊上的中線,
∴MA=MC=MB,
∴∠1=∠A,
∴∠2=∠A,∠3=∠1+∠A=2∠1=2∠2,
∵CD⊥AB,
∴∠3+∠2=90°,
∴2∠2+∠2=90°,
∴∠2=30°,
∴∠A=30°.
故答案為:30.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC邊OA,OC分別在x軸,y的正半軸上,且OA=8,OC=6,連接AC,點D為AC中點,點E從點C出發(fā)以每秒1個單位長度運動到點O停止,設運動時間為t秒(0<t<6),連接DE,作DF⊥DE交OA于點F,連接EF.
(1)當t的值為 時,四邊形DEOF是矩形;
(2)用含t的代數式表示線段OF的長度,并說明理由;
(3)當△OEF面積為時,請直接寫出直線DE的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間,則下列結論:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有兩個互異實根.其中正確結論的個數是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某社區(qū)為了進一步提高居民珍惜誰、保護水和水憂患意識,提倡節(jié)約用水,從本社區(qū)5000戶家庭中隨機抽取100戶,調查他們家庭每季度的平均用水量,并將調查的結果繪制成如下的兩幅不完整的統(tǒng)計圖和表:
用戶季度用水量頻數分布表
平均用水量(噸) | 頻數 | 頻率 |
3<x≤6 | 10 | 0.1 |
6<x≤9 | m | 0.2 |
9<x≤12 | 36 | 0.36 |
12<x≤15 | 25 | n |
15<x≤18 | 9 | 0.09 |
請根據上面的統(tǒng)計圖表,解答下列問題:
(1)在頻數分布表中:m=_______,n=________;
(2)根據題中數據補全頻數直方圖;
(3)如果自來水公司將基本季度水量定為每戶每季度9噸,不超過基本季度用水量的部分享受基本價格,超出基本季度用水量的部分實行加價收費,那么該社區(qū)用戶中約有多少戶家庭能夠全部享受基本價格?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一個被等分成4個扇形的圓形轉盤,其中3個扇形分別標有數字2,5,6,指針的位置固定,轉動轉盤后任其自由停止,其中的某個扇形會恰好停在指針所指的位置(指針指向兩個扇形的交線時,重新轉動轉盤).
(1)求當轉動這個轉盤,轉盤自由停止后,指針指向沒有標數字
的扇形的概率;
(2)請在4,7,8,9這4個數字中選出一個數字填寫在沒有標數字的扇形內,使得分別轉動轉盤2次,轉盤自由停止后指針所指扇形的數字和分別為奇數與為偶數的概率相等,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次數學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉盤做游戲(每個轉盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內標上數字).游戲規(guī)則如下:兩人分別同時轉動甲、乙轉盤,轉盤停止后,若指針所指區(qū)域內兩數和小于12,則李燕獲勝;若指針所指區(qū)域內兩數和等于12,則為平局;若指針所指區(qū)域內兩數和大于12,則劉凱獲勝(若指針停在等分線上,重轉一次,直到指針指向某一份內為止).
(1)請用列表的方法表示出上述游戲中兩數和的所有可能的結果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司在甲、乙倉庫共存放某種原料450噸,如果運出甲倉庫所存原料的60%,乙倉庫所存原料的40%,那么乙倉庫剩余的原料比甲倉庫剩余的原料多30噸.
(1)求甲、乙兩倉庫各存放原料多少噸?
(2)現公司需將300噸原料運往工廠,從甲、乙兩個倉庫到工廠的運價分別為120元/噸和100元/噸.經協(xié)商,從甲倉庫到工廠的運價可優(yōu)惠a元噸(10≤a≤30),從乙倉庫到工廠的運價不變,設從甲倉庫運m噸原料到工廠,請求出總運費W關于m的函數解析式(不要求寫出m的取值范圍);
(3)在(2)的條件下,請根據函數的性質說明:隨著m的增大,W的變化情況.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com