(12分)在梯形ABCD中,DC∥AB,DE⊥AB于點(diǎn)E。
閱讀理解:在圖一中,延長(zhǎng)梯形ABCD的兩腰AD,BC交于點(diǎn)P,過點(diǎn)D作DF∥CB交AB于點(diǎn)F,得到圖二;四邊形BCDF的面積為S,△ADF的面積為S1,△PDC的面積為S2。
解決問題:

⑴在圖一中,若DC=2,AB=8,DE=3,則S =    ,S1 =     ,S2 =     ,則=    
⑵在圖二中,若AB=a,DC=b,DE=h,則=    ,并寫出理由。
拓展應(yīng)用:如圖三,現(xiàn)有一塊地△PAB需進(jìn)行美化,DEFC的四個(gè)頂點(diǎn)在△PAB的三邊上,且種植茉莉花;若△PDC,△ADE,△CFB的面積分別為2m2,3 m2,5 m2且種植月季花。已知1 m2茉莉花的成本為120元,1 m2月季的成本為80元。試?yán)芒浦械慕Y(jié)論求DEFC的面積,并求美化后的總成本是多少元?

⑴S=6,S1=9,S2=1,,⑵4,理由略。⑶做DQ平行于PB,SDEFC=SDQBC=S,所以S△ADQ= S△ADE+S△CFB=3+5=S1,所以S△PDC=2=S2,可得S=8,所以W=1760

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,則∠ADC=
140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),給出下面三個(gè)論斷:①AD=BC;②DE=CE;③AE=BE.請(qǐng)你以其中的兩個(gè)論斷為條件,填入“已知”欄中,以一個(gè)論斷作為結(jié)論,填入“求證”欄中,使之成為一個(gè)正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD=AB,過點(diǎn)A作AE∥DB交CB的延長(zhǎng)線于點(diǎn)E.
(1)試說明∠ABD=∠CBD.
(2)若∠C=2∠E,試說明AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,則∠BDC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,點(diǎn)P是下底BC邊上的一個(gè)動(dòng)點(diǎn),從B向C以2cm/s的速度運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s).
(1)求BC的長(zhǎng);
(2)當(dāng)t為何值時(shí),四邊形APCD是等腰梯形;
(3)當(dāng)t為何值時(shí),以A、B、P為頂點(diǎn)的三角形是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案