【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)坐標(biāo)為,點(diǎn)在邊上從點(diǎn)運(yùn)動(dòng)到點(diǎn),以為邊作正方形,連,在點(diǎn)運(yùn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄恳韵聠?wèn)題:
(1)的面積是否改變,如果不變,求出該定值;如果改變,請(qǐng)說(shuō)明理由;
(2)若為等腰三角形,求此時(shí)正方形的邊長(zhǎng).
【答案】(1)不變,;(2)正方形ADEF的邊長(zhǎng)為或或.
【解析】
(1)作交延長(zhǎng)線(xiàn)于,證明,從而可得 ,繼而根據(jù)三角形面積公式進(jìn)行計(jì)算即可;
(2)分、、三種情況分別討論求解即可.
(1)作交延長(zhǎng)線(xiàn)于,
∵正方形中,,,
∴,
∵,∴,
∴,
∵矩形中,,
∴,∴,
∴,
∴;
(2)①當(dāng)時(shí),作 ,
∵正方形中,,
∴,∴,
同(1)可得≌,
∴, ∴,
∴;
②當(dāng)時(shí),,
∵正方形中,,,
∴,∴≌,
∴,
∵矩形中,,
∴ ;
③當(dāng)時(shí),作,
同理得, ,
∴;
綜上,正方形ADEF的邊長(zhǎng)為或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)與軸交于點(diǎn),,與軸交于點(diǎn),頂點(diǎn)為,直線(xiàn)與軸交于點(diǎn).
(Ⅰ)求頂點(diǎn)的坐標(biāo);
(Ⅱ)如圖,設(shè)點(diǎn)為線(xiàn)段上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、重合),過(guò)點(diǎn)作軸的垂線(xiàn)與拋物線(xiàn)交于點(diǎn).求的面積最大值;
(Ⅲ)點(diǎn)在線(xiàn)段上,當(dāng)時(shí),求點(diǎn)的坐標(biāo)(直接寫(xiě)出結(jié)果,不必寫(xiě)解答過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器商場(chǎng)銷(xiāo)售A,B兩種型號(hào)計(jì)算器,兩種計(jì)算器的進(jìn)貨價(jià)格分別為每臺(tái)30元,40元. 商場(chǎng)銷(xiāo)售5臺(tái)A型號(hào)和1臺(tái)B型號(hào)計(jì)算器,可獲利潤(rùn)76元;銷(xiāo)售6臺(tái)A型號(hào)和3臺(tái)B型號(hào)計(jì)算器,可獲利120元.
(1)求商場(chǎng)銷(xiāo)售A,B兩種型號(hào)計(jì)算器的銷(xiāo)售價(jià)格分別是多少元?(利潤(rùn)=銷(xiāo)售價(jià)格﹣進(jìn)貨價(jià)格)
(2)商場(chǎng)準(zhǔn)備用不多于2500元的資金購(gòu)進(jìn)A,B兩種型號(hào)計(jì)算器共70臺(tái),問(wèn)最少需要購(gòu)進(jìn)A型號(hào)的計(jì)算器多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017廣東。┤鐖D,AB是⊙O的直徑,AB=,點(diǎn)E為線(xiàn)段OB上一點(diǎn)(不與O,B重合),作CE⊥OB,交⊙O于點(diǎn)C,垂足為點(diǎn)E,作直徑CD,過(guò)點(diǎn)C的切線(xiàn)交DB的延長(zhǎng)線(xiàn)于點(diǎn)P,AF⊥PC于點(diǎn)F,連接CB.
(1)求證:CB是∠ECP的平分線(xiàn);
(2)求證:CF=CE;
(3)當(dāng)時(shí),求劣弧的長(zhǎng)度(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn) A的坐標(biāo)為(4,2),頂點(diǎn)B,C分別在軸,軸的正半軸上.
(1)求證:∠OCB=∠ABE;
(2)求OC長(zhǎng)的取值范圍;
(3)若D的坐標(biāo)為(,),請(qǐng)說(shuō)明隨的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)與軸交于),兩點(diǎn),與軸交于點(diǎn),連接.
(1)求該拋物線(xiàn)的解析式,并寫(xiě)出它的對(duì)稱(chēng)軸;
(2)點(diǎn)為拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),連接,若,求點(diǎn)的坐標(biāo);
(3)已知,若是拋物線(xiàn)上一個(gè)動(dòng)點(diǎn)(其中),連接,求面積的最大值及此時(shí)點(diǎn)的坐標(biāo).
(4)若點(diǎn)為拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),拋物線(xiàn)上是否存在點(diǎn),使得以為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:-()-1+3tan30°-20190+|1-|
(2)如圖,在正五邊形ABCDE中,CA與DB相交于點(diǎn)F,若AB=1,求BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)兩位數(shù)十位、個(gè)位上的數(shù)字分別為,我們可將這個(gè)兩位數(shù)記為,易知;同理,一個(gè)三位數(shù)、四位數(shù)等均可以用此記法,如.
(基礎(chǔ)訓(xùn)練)
(1)解方程填空:
①若,則______;
②若,則______;
③若,則______;
(能力提升)
(2)交換任意一個(gè)兩位數(shù)的個(gè)位數(shù)字與十位數(shù)字,可得到一個(gè)新數(shù),則一定能被______整除,一定能被______整除,+++6一定能被______整除;(請(qǐng)從大于5的整數(shù)中選擇合適的數(shù)填空)
(探索發(fā)現(xiàn))
(3)北京時(shí)間2019年4月10日21時(shí),人類(lèi)拍攝的首張黑洞照片問(wèn)世,黑洞是一種引力極大的天體,連光都逃脫不了它的束縛.?dāng)?shù)學(xué)中也存在有趣的黑洞現(xiàn)象:任選一個(gè)三位數(shù),要求個(gè)、十、百位的數(shù)字各不相同,把這個(gè)三位數(shù)的三個(gè)數(shù)字按大小重新排列,得出一個(gè)最大的數(shù)和一個(gè)最小的數(shù),用得出的最大的數(shù)減去最小的數(shù)得到一個(gè)新數(shù)(例如若選的數(shù)為325,則用532-235=297),再將這個(gè)新數(shù)按上述方式重新排列,再相減,像這樣運(yùn)算若干次后一定會(huì)得到同一個(gè)重復(fù)出現(xiàn)的數(shù),這個(gè)數(shù)稱(chēng)為“卡普雷卡爾黑洞數(shù)”.
①該“卡普雷卡爾黑洞數(shù)”為______;
②設(shè)任選的三位數(shù)為(不妨設(shè)),試說(shuō)明其均可產(chǎn)生該黑洞數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,為斜邊的中點(diǎn),連接,點(diǎn)是邊上的動(dòng)點(diǎn)(不與點(diǎn)重合),過(guò)點(diǎn)作交延長(zhǎng)線(xiàn)交于點(diǎn),連接,下列結(jié)論:
①若,則;
②若,則;
③和一定相似;
④若,則.
其中正確的是_____.(填寫(xiě)所有正確結(jié)論的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com