如圖,在直角梯形OBCD中,OB=8,BC=1,CD=10.
(1)求C,D兩點的坐標;
(2)若線段OB上存在點P,使PD⊥PC,求過D,P,C三點的拋物線的表達式.

【答案】分析:(1)過點C作CE⊥OD于點E,則四邊形OBCE為矩形.利用矩形的性質(zhì)可求得:C,D兩點的坐標分別為C(8,1),D(0,7).(2)根據(jù)PC⊥PD,可知∠1+∠2=90°,∠1+∠3=90°,∠2=∠3.則Rt△POD∽Rt△CBP,可求PO:1=7:(8-PO).求得PO=1,或PO=7.則點P的坐標為(1,0),或(7,0).設經(jīng)過D,P,C三點的拋物線表達式為y=ax2+bx+c,分別利用待定系數(shù)法可求得①當點P的坐標為(1,0)時,所求拋物的表達式為:y=x2-x+7.
②當點P為(7,0)時,所求拋物線的表達式為:y=x2-x+7.
解答:解:(1)過點C作CE⊥OD于點E,則四邊形OBCE為矩形.
∴CE=OB=8,OE=BC=1.

∴OD=DE+OE=7.
∴C,D兩點的坐標分別為C(8,1),D(0,7).(4分)

(2)∵PC⊥PD,
∴∠1+∠2=90度.
又∠1+∠3=90°,
∴∠2=∠3.
∴Rt△POD∽Rt△CBP.
∴PO:CB=OD:BP.
即PO:1=7:(8-PO).
∴PO2-8PO+7=0.
∴PO=1,或PO=7.
∴點P的坐標為(1,0),或(7,0).(6分)
①當點P的坐標為(1,0)時,
設經(jīng)過D,P,C三點的拋物線表達式為y=ax2+bx+c,
,

∴所求拋物線的表達式為:y=x2-x+7.(9分)
②當點P為(7,0)時,設經(jīng)過D,P,C三點的拋物線表達式為y=ax2+bx+c,
,

∴所求拋物線的表達式為:y=x2-x+7.(10分)
(說明:求出一條拋物線表達式給(3分),求出兩條拋物線表達式給4分)
點評:本題考查二次函數(shù)的綜合應用,其中涉及到的知識點有待定系數(shù)法求函數(shù)解析式和三角形全等的判定以及全等的性質(zhì)等.要熟練掌握才能靈活運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形OABD中,DB∥OA,∠OAB=90°,點O為坐標原點,點A在x軸的正半軸上,精英家教網(wǎng)對角線OB,AD相交于點M.OA=2,AB=2
3
,BM:MO=1:2.
(1)求OB和OM的值;
(2)求直線OD所對應的函數(shù)關(guān)系式;
(3)已知點P在線段OB上(P不與點O,B重合),經(jīng)過點A和點P的直線交梯形OABD的邊于點E(E異于點A),設OP=t,梯形OABD被夾在∠OAE內(nèi)的部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形OABC中,CB∥OA,∠OAB=90°,點O為坐標原點,點A在x軸的精英家教網(wǎng)正半軸上,對角線OB,AC相交于點M,OA=AB=4,OA=2CB.
(1)點C的坐標為
 
;
(2)求△OCM的面積;
(3)若點E在過O,A,C三點的拋物線的對稱軸上,點F為該拋物線上的點,且以A,O,F(xiàn),E四點為頂點的四邊形為平行四邊形,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形OABC中,OA∥BC,A、B兩點的坐標分別為A(13,0),B(11,12).動點P、Q分別從O、B兩點出發(fā),點P以每秒2個單位的速度沿x軸向終點A運動,點Q以每秒1個單位的速度沿BC方向運動;當點P停止運動時,點Q也同時停止運動.線段PQ和OB相交于點D,過點D作DE∥x軸,交AB于點E,射線QE交x軸于點F.設動點P、Q運動時間精英家教網(wǎng)為t(單位:秒).
(1)當t為何值時,四邊形PABQ是平行四邊形.
(2)△PQF的面積是否發(fā)生變化?若變化,請求出△PQF的面積s關(guān)于時間t的函數(shù)關(guān)系式;若不變,請求出△PQF的面積.
(3)隨著P、Q兩點的運動,△PQF的形狀也隨之發(fā)生了變化,試問何時會出現(xiàn)等腰△PQF?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形中OABC,已知B、C兩點的坐標分別為B(8,6)、C(10,0),動點M由原點O出發(fā)沿OB方向勻速運動,速度為1單位/秒;同時,線段精英家教網(wǎng)DE由CB出發(fā)沿BA方向勻速運動,速度為1單位/秒,交OB于點N,連接DM.若沒運動時間為t(s)(0<t<8).
(1)當t為何值時,以B、D、M為頂點的三角形△OAB與相似?
(2)設△DMN的面積為y,求y與t之間的函數(shù)關(guān)系式;
(3)連接ME,在上述運動過程中,五邊形MECBD的面積是否總為定值?若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形OABC中,OA、OC邊所在直線與x、y軸重合,BC∥OA,點B的坐標為(6.4,4.8),對角線OB⊥OA.在線段OA、AB上有動點E、D,點E以每秒2厘米的速度在線段OA上從點O向點A勻速運動,同時點D以每秒1厘米的速度在線段AB上從點A向點B勻速運動.當點E到達點A時,點D同時停止運動.設點E的運動時間為t(秒),
(1)求線段AB所在直線的解析式;
(2)設四邊形OEDB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的t的取值范圍;
(3)在運動過程中,存不存在某個時刻,使得以A、E、D為頂點的三角形與△ABO相似,若存在求出這個時刻t,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案