在一次運輸任務(wù)中,一輛汽車將一批貨物從甲地運往乙地,到達乙地卸貨后返回.設(shè)汽車從甲地出發(fā)x(h)時,汽車與甲地的距離為y(km),y與x的函數(shù)關(guān)系如圖所示.
(1)這輛汽車的往、返速度是否相同?請說明理由;
(2)寫出返程中y與x之間的函數(shù)表達式;并指出其中自變量的取值范圍.
(3)求這輛汽車從甲地出發(fā)4h時與甲地的距離.
(1)不相同,理由見解析;(2)y=-48x+240.(2.5≤x≤5);(3)48km.
解析試題分析:(1)由圖象可知,去時用了2小時,返回時用了5-2.5=2.5小時,而路程相等,所以往返速度不同;
(2)可設(shè)該段函數(shù)解析式為y=kx+b.因為圖象過點(2.5,120),(5,0),列出方程組即可求解;
(3)由圖象可知,x=4時,汽車正處于返回途中,所以把x=4代入(2)中的函數(shù)解析式即可求解.
試題解析:(1)不同.理由如下:
∵往、返距離相等,去時用了2小時,而返回時用了2.5小時,
∴往、返速度不同
(2)設(shè)返程中y與x之間的表達式為y=kx+b,
則,解之,得.
∴y=-48x+240.(2.5≤x≤5)
(3)當x=4時,汽車在返程中,∴y=-48×4+240=48.
∴這輛汽車從甲地出發(fā)4h時與甲地的距離為48km.
考點:一次函數(shù)的應用.
科目:初中數(shù)學 來源: 題型:解答題
如圖,點A(1,6)和點M(m,n)都在反比例函數(shù)y=(x>0)的圖象上,
(1)k的值為 ;
(2)當m=3,求直線AM的解析式;
(3)當m>1時,過點M作MP⊥x軸,垂足為P,過點A作AB⊥y軸,垂足為B,試判斷直線BP與直線AM的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
做服裝生意的王老板經(jīng)營甲、乙兩個店鋪,每個店鋪在同一段時間內(nèi)都能售出A、B兩種款式的服裝合計30件,并且每售出一件A款式和B款式服裝,甲店鋪獲利潤分別為30元和35元,乙店鋪獲利潤分別為26元和36元.某日,王老板進A款式服裝36件,B款式服裝24件,并將這批服裝分配給兩個店鋪各30件.
(1)怎樣將這60件服裝分配給兩個店鋪,能使兩個店鋪在銷售完這批服裝后所獲利潤相同?
(2)怎樣分配這60件服裝能保證在甲店鋪獲利潤不小于950元的前提下,王老板獲利的總利潤最大?最大的總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知一次函數(shù)y=x+b的圖象與x軸,y軸交于點A、B.
(1)若將此函數(shù)圖象沿x軸向右平移2個單位后經(jīng)過原點,則b= ;
(2)若函數(shù)y1=x+b圖象與一次函數(shù)y2=kx+4的圖象關(guān)于y軸對稱,求k、b的值;
(3)當b>0時,函數(shù)y1=x+b圖象繞點B逆時針旋轉(zhuǎn)n°(0°<n°<180°)后,對應的函數(shù)關(guān)系式為y=-x+b,求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,已知,,點C(-2,m)在直線AB上,反比例函數(shù)的圖象經(jīng)過點C.
(1)求一次函數(shù)及反比例函數(shù)的解析式;
(2)結(jié)合圖象直接寫出:當時,不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,直線,相交于點,與軸的交點坐標為,與軸的交點坐標為,結(jié)合圖象解答下列問題:(每小題4分,共8分)
(1)求直線表示的一次函數(shù)的表達式;
(2)當為何值時,,表示的兩個一次函數(shù)值都大于.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
爾凡駕車從甲地到乙地,設(shè)他出發(fā)第xmin時的速度為ykm/h,圖中的折線表示他在整個駕車過程中y與x之間的函數(shù)關(guān)系.
(1)當20≤x≤30時,汽車的平均速度為 km/h,該段時間行駛的路程為 km;
(2)當30≤x≤35時,求y與x之間的函數(shù)關(guān)系式,并求出爾凡出發(fā)第32min時的速度;
(3)如果汽車每行駛100km耗油8L,那么爾凡駕車從甲地到乙地共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知點A(0,12),B(16,0),動點P從點A開始在線段AO上以每秒1個單位的速度向點O移動,同時點Q從點B開始在BA上以每秒2個單位的速度向點A移動,設(shè)點P、Q移動的時間為t秒。
⑴求直線AB的解析式;
⑵求t為何值時,△APQ與△AOB相似?
⑶當t為何值時,△APQ的面積為個平方單位?
⑷當t為何值時,△APQ的面積最大,最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com