如圖,等邊三角形ABC,邊長(zhǎng)為2,AD是BC邊上的高.
(1)在△ABC內(nèi)部作一個(gè)矩形EFGH(如圖1),其中E、H分別在邊AB、AC上,F(xiàn)G在邊BC上.
①設(shè)矩形的一邊FG=x,那么EF=______
【答案】分析:(1)①FG=x,那么FD=,易得BD=1,那么BF=1-,∵∠B=60°,∠EFB=90°,∴EF=-x.
②面積=長(zhǎng)×寬,那么就可以表示為關(guān)于x的二次函數(shù),得出最值即可.
(2)由②得,F(xiàn)G=1時(shí)矩形面積最大,此時(shí),BF=0.5,那么BE=1,那么以B為圓心,BD為半徑畫弧交AB于點(diǎn)E即可.
解答:解:(1)①-x.(2分)
(6分)
=.(7分)
當(dāng)x=1時(shí),y有最大值,且最大值為.(8分)

(2)畫法:以B為圓心,BD長(zhǎng)為半徑畫弧,交AB于點(diǎn)E,則點(diǎn)E即為所求(10分)
畫圖正確(12分)
點(diǎn)評(píng):解決本題的關(guān)鍵是根據(jù)等邊三角形三線合一性質(zhì)及特殊的三角函數(shù)求得矩形另一邊長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等邊三角形AOB的頂點(diǎn)A在反比例函數(shù)y=
3
x
(x>0)的圖象上,點(diǎn)B在x軸上.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線AB的函數(shù)表示式;
(3)在y軸上是否存在點(diǎn)P,使△OAP是等腰三角形?若存在,直接把符合條件的點(diǎn)P的坐標(biāo)都寫出來(lái);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊三角形ABC中,D、E分別為AB、BC邊上的兩動(dòng)點(diǎn),且總使AD=BE,AE與CD交于點(diǎn)F,AG⊥CD于點(diǎn)G,則
FG
AF
=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,等邊三角形ABC的邊長(zhǎng)為6,點(diǎn)D,E分別在邊AB,AC上,且AD=AE=2.若點(diǎn)F從點(diǎn)B開始以每秒1個(gè)單位長(zhǎng)的速度沿射線BC方向運(yùn)動(dòng),設(shè)點(diǎn)F運(yùn)動(dòng)的時(shí)間為t秒.當(dāng)t>0時(shí),直線FD與過(guò)點(diǎn)A且平行于BC的直線相交于點(diǎn)G,GE的延長(zhǎng)線與BC的延長(zhǎng)線相交于點(diǎn)H,AB與GH相交于點(diǎn)O.
(1)設(shè)△EGA的面積為S,寫出S與t的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時(shí),AB⊥GH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊三角形ABC的邊長(zhǎng)為a,若D、E、F、G分別為AB、AC、CD、BF的中點(diǎn),則△BEG的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:013

已知:如圖,在等邊三角形AB,AD=BE=CF,D,E,F不是各邊的中點(diǎn),AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個(gè)三角形全等,在圖中全等三角形的組數(shù)是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案