如圖,直線y=-x+4與坐標(biāo)軸分別交于點(diǎn)A、B,與直線y=x交于點(diǎn)C.在線段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過(guò)點(diǎn)P、Q作x軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過(guò)程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外).
(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?
(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?
(3)當(dāng)t為多少秒時(shí),矩形PEFQ的面積S最大?并求出最大值.
【答案】分析:(1)根據(jù)直線y=-x+4與坐標(biāo)軸分別交于點(diǎn)A、B,得出A,B點(diǎn)的坐標(biāo),再利用EP∥BO,得出==,據(jù)此可以求得點(diǎn)P的運(yùn)動(dòng)速度;
(2)當(dāng)PQ=PE時(shí),以及當(dāng)PQ=PE時(shí),矩形PEFQ為正方形,分別求出即可;
(3)根據(jù)(2)中所求得出s與t的函數(shù)關(guān)系式,進(jìn)而利用二次函數(shù)性質(zhì)求出即可.
解答:解:(1)∵直線y=-x+4與坐標(biāo)軸分別交于點(diǎn)A、B,
∴x=0時(shí),y=4,y=0時(shí),x=8,
==,
當(dāng)t秒時(shí),QO=FQ=t,則EP=t,
∵EP∥BO,
==,
∴AP=2t,
∵動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),
∴點(diǎn)P運(yùn)動(dòng)的速度是每秒2個(gè)單位長(zhǎng)度;

(2)如圖1,當(dāng)PQ=PE時(shí),矩形PEFQ為正方形,
則∵OQ=FQ=t,PA=2t,
∴QP=8-t-2t=8-3t,
∴8-3t=t,
解得:t=2,
如圖2,當(dāng)PQ=PE時(shí),矩形PEFQ為正方形,
∵OQ=t,PA=2t,
∴OP=8-2t,
∴QP=t-(8-2t)=3t-8,
∴t=3t-8,
解得:t=4;

(3)如圖1,當(dāng)Q在P點(diǎn)的左邊時(shí),
∵OQ=t,PA=2t,
∴QP=8-t-2t=8-3t,
∴S矩形PEFQ=QP•QF=(8-3t)•t=8t-3t2
當(dāng)t=-=時(shí),
S矩形PEFQ的最大值為:=
如圖2,當(dāng)Q在P點(diǎn)的右邊時(shí),
∵OQ=t,PA=2t,
∴2t>8-t,
∴t,
∴QP=t-(8-2t)=3t-8,
∴S矩形PEFQ=QP•QF=(3t-8)•t=3t2-8t,
∵當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),
<t≤4,
當(dāng)t=-=時(shí),S矩形PEFQ的最小,
∴t=4時(shí),S矩形PEFQ的最大值為:3×42-8×4=16,
綜上所述,當(dāng)t=4時(shí),S矩形PEFQ的最大值為:16.
點(diǎn)評(píng):此題主要考查了二次函數(shù)與一次函數(shù)的綜合應(yīng)用,得出P,Q不同的位置進(jìn)行分類討論得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點(diǎn)A(-2,4),B(8,2).精英家教網(wǎng)
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,直線AB、CD相交于點(diǎn)E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線y=6-x交x軸、y軸于A、B兩點(diǎn),P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為點(diǎn)M,交AB于點(diǎn)E,過(guò)點(diǎn)P作y軸的垂線,垂足為點(diǎn)N,交AB于點(diǎn)F.則AF•BE=( 。
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(shù)(可在圖中用數(shù)字表示角).

查看答案和解析>>

同步練習(xí)冊(cè)答案