(2012•張家港市模擬)如圖,以矩形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),點(diǎn)F在BC上,CF=1,點(diǎn)M、N分別是x軸、y軸上的動(dòng)點(diǎn),則四邊形MEFN周長(zhǎng)的最小值為
5+
5
5+
5
分析:由于四邊形MEFN中,EF的長(zhǎng)度為定值,欲求四邊形MEFN周長(zhǎng)的最小值,即求其它三邊之和的最小值,為此,作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′,作點(diǎn)F關(guān)于y軸的對(duì)稱點(diǎn)F′,連接E′F′,分別與x軸、y軸交于點(diǎn)M,N,則線段E′F′的長(zhǎng)度就是其它三邊之和的最小值.
解答:解:如圖,作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′,作點(diǎn)F關(guān)于y軸的對(duì)稱點(diǎn)F′,連接E′F′,分別與x軸、y軸交于點(diǎn)M,N,則點(diǎn)M,N就是所求點(diǎn).
∵矩形OABC中,OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),點(diǎn)F在BC上,CF=1,
∴E′(3,-1),F(xiàn)′(-1,2),NF=NF′,ME=ME′,
∴BF′=4,BE′=3,
∴FN+NM+ME=F′N+NM+ME′=E′F′=
BE2+BF2
=5,
又∵EF=
BE2+BF2
=
12+22
=
5
,
∴FN+MN+ME+EF=5+
5

此時(shí)四邊形MNFE的周長(zhǎng)的最小值是5+
5
點(diǎn)評(píng):本題考查了軸對(duì)稱-最短路線問(wèn)題,矩形的性質(zhì),坐標(biāo)與圖形的性質(zhì),難度中等,求線段的和最小的問(wèn)題基本的解題思路是根據(jù)軸對(duì)稱轉(zhuǎn)化為兩點(diǎn)之間的距離的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家港市模擬)在平行四邊形ABCD中,AB=10,AD=6,AD⊥BD,點(diǎn)M是AB邊上的一個(gè)動(dòng)點(diǎn),ME平分∠DMB,與BD、CD分別交于點(diǎn)E、F.

(1)當(dāng)AM=DM時(shí),證明四邊形AMFD是平行四邊形;(如圖1)
(2)當(dāng)DM⊥AB時(shí),則ME:EF的值為
4:3
4:3
;(如圖2)
(3)當(dāng)AM為何值時(shí),△DME∽△DBM?(如圖3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家港市模擬)如圖標(biāo)中,屬于中心對(duì)稱的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家港市模擬)樣本數(shù)據(jù)3、6、10、4、2的平均數(shù)和極差分別是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家港市模擬)如圖,在直角坐標(biāo)系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點(diǎn)B的坐標(biāo)為(1,2),將矩形沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)D的位置,且AD交y軸于點(diǎn)E.那么點(diǎn)D的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家港市模擬)如圖,在菱形ABCD中,已知E、F分別是邊AB、BC的中點(diǎn),CE、DF交于點(diǎn)G.若△CGF的面積為2,則菱形ABCD的面積為
40
40

查看答案和解析>>

同步練習(xí)冊(cè)答案