(2010•小店區(qū))如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC.

(1)試猜想AE與GC有怎樣的位置關(guān)系,并證明你的結(jié)論;
(2)將正方形DEFG繞點D按順時針方向旋轉(zhuǎn),使點E落在BC邊上,如圖2,連接AE和GC.你認為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請說明理由.
【答案】分析:(1)觀察圖形,AE、CG的位置關(guān)系可能是垂直,下面著手證明.由于四邊形ABCD、DEFG都是正方形,易證得△ADE≌△CDG,則∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AH⊥CG.
(2)題(1)的結(jié)論仍然成立,參照(1)題的解題方法,可證△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由圖知∠AEB=∠CEH=90°-∠6,即∠7+∠CEH=90°,由此得證.
解答:解:(1)答:AE⊥GC;(1分)
證明:延長GC交AE于點H,
在正方形ABCD與正方形DEFG中,
AD=DC,∠ADE=∠CDG=90°,
DE=DG,
∴△ADE≌△CDG,
∴∠1=∠2;(3分)
∵∠2+∠3=90°,
∴∠1+∠3=90°,
∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,
∴AE⊥GC.(5分)

(2)答:成立;(6分)
證明:延長AE和GC相交于點H,
在正方形ABCD和正方形DEFG中,
AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,
∴∠1=∠2=90°-∠3;
∴△ADE≌△CDG,
∴∠5=∠4;(8分)
又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,
∴∠6=∠7,
又∵∠6+∠AEB=90°,∠AEB=∠CEH,
∴∠CEH+∠7=90°,
∴∠EHC=90°,
∴AE⊥GC.(10分)
點評:本題主要考查旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定和性質(zhì).需要注意的是:旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2010•小店區(qū))(1)計算:
9
+(-
1
2
-1-
2
sin45°+(
3
-2)0
(2)先化簡,再求值:(
3x
x-1
-
x
x+1
)•
x2-1
2x
,其中x=-3.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省蘇州市中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

(2010•小店區(qū))在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分別以O(shè)A、OC邊所在直線為x軸、y軸建立如圖所示的平面直角坐標系.
(1)求點B的坐標;
(2)已知D、E分別為線段OC、OB上的點,OD=5,OE=2EB,直線DE交x軸于點F,求直線DE的解析式;
(3)點M是(2)中直線DE上的一個動點,在x軸上方的平面內(nèi)是否存在另一個點N,使以O(shè)、D、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2010•小店區(qū))如圖,A是反比例函數(shù)圖象上一點,過點A作AB⊥y軸于點B,點P在x軸上,△ABP面積為2,則這個反比例函數(shù)的解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山西省中考數(shù)學試卷(解析版) 題型:解答題

(2010•小店區(qū))已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.
(1)求點A、B、C、D的坐標,并在下面直角坐標系中畫出該二次函數(shù)的大致圖象;
(2)說出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山西省中考數(shù)學試卷(解析版) 題型:填空題

(2010•小店區(qū))如圖,A是反比例函數(shù)圖象上一點,過點A作AB⊥y軸于點B,點P在x軸上,△ABP面積為2,則這個反比例函數(shù)的解析式為   

查看答案和解析>>

同步練習冊答案