【題目】如圖,矩形ABCD中,P為AD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應點為點E),PE與CD相交于點O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結束】
25
【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數(shù)量是用75元購進B種套裝數(shù)量的2倍.
(1)求A,B兩種品牌套裝每套進價分別為多少元?
(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數(shù)量比購進A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?
【答案】(1)A種品牌套裝每套進價為10元,B種品牌套裝每套進價為7.5元;(2)最少購進A品牌工具套裝17套.
【解析】試題分析:(1)利用兩種套裝的套數(shù)作為等量關系列方程求解.(2)利用總獲利大于等于120,解不等式.
試題解析:
(1)解:設B種品牌套裝每套進價為x元,則A種品牌套裝每套進價為(x+2.5)元.
根據(jù)題意得: =2×,
解得:x=7.5,
經檢驗,x=7.5為分式方程的解,
∴x+2.5=10.
答:A種品牌套裝每套進價為10元,B種品牌套裝每套進價為7.5元.
(2)解:設購進A品牌工具套裝a套,則購進B品牌工具套裝(2a+4)套,
根據(jù)題意得:(13﹣10)a+(9.5﹣7.5)(2a+4)>120,
解得:a>16,
∵a為正整數(shù),
∴a取最小值17.
答:最少購進A品牌工具套裝17套.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①已知直角三角形的面積為4,兩直角邊的比為1:2,則斜邊長為;②直角三角形的最大邊長為,最短邊長為1,則另一邊長為;③在△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC為直角三角形;④等腰三角形面積為12,底邊上的高為4,則腰長為5,其中正確結論的序號是( 。
A. 只有①②③ B. 只有①②④ C. 只有③④ D. 只有②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥EF,則∠A、∠C、∠D、∠E滿足的數(shù)量關系是( )
A. ∠A+∠C+∠D+∠E=360°B. ∠A-∠C+∠D+∠E=180°
C. ∠E-∠C+∠D-∠A=90°D. ∠A+∠D=∠C+∠E
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,點E、F分別是AB、CD的中點,過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求證:AD=BC;
(2)求證:△AGD∽△EGF;
(3)如圖2,若AD、BC所在直線互相垂直,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AC=AD,∠CAD=60°,分別連接BC、BD,作AE平分∠BAC交BD于點E,若BE=4,ED=8,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點D是邊BC上的點(與B,C兩點不重合),過點D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點,下列說法正確的是( 。
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD所在的網(wǎng)格圖中,每個小正方形的邊長均為1個單位長度.
(1)請畫出將四邊形ABCD向上平移5個單位長度,再向左平移2個單位長度后所得的四邊形A′B′C′D′.
(2)求線段AB掃過的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在三角形ABC中,∠C=90°,AC=6cm,BC=10cm,點P從B點開始向C點運動速度是每秒1cm,設運動時間是t秒,
(1)用含t的代數(shù)式來表示三角形ACP的面積.
(2)當三角形ACP的面積是三角形ABC的面積的一半時,求t的值,并指出此時點P在BC上的什么位置?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com