直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8。P是AC上的一個動點,當(dāng)P在AC上運動時,設(shè)PC=x,△ABP 的面積為y.
(1)求AC邊上的高是多少?
(2)求y與x之間的關(guān)系式。

(1)4.8;(2)y=-2.4x+24

解析試題分析:(1)根據(jù)等面積法求解即可;
(2)作PD⊥AB,可得△ADP∽△ABC,根據(jù)相似三角形的性質(zhì),可用x表示出PD的長,根據(jù)SABP=AB×PD,代入數(shù)值,即可求出y與x之間的關(guān)系式.
解:(1)設(shè)AC邊上的高是x,由題意得

解得
答:AC邊上的高是4.8;
(2)作PD⊥AB

∴△ADP∽△ABC,


∴y與x之間的關(guān)系式為:y=-2.4x+24.
考點:三角形的面積公式,相似三角形的判定和性質(zhì)
點評:相似三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連結(jié)并延長交的延長線于點

(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在矩形ABCD中,點P是邊AD上的動點,連接BP,線段BP的垂直平分線交邊BC于點Q,垂足為點M,連接QP(如圖).已知AD=13,AB=5,設(shè)AP=x,BQ=y.

(1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(2)當(dāng)以AP長為半徑的⊙P和以QC長為半徑的⊙Q外切時,求x的值;
(3)點E在邊CD上,過點E作直線QP的垂線,垂足為F,如果EF=EC=4,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在矩形ABCD中,點P在邊CD上,且與C、D不重合,過點A作AP的垂線與CB的延長線相交于點Q,連接PQ,M為PQ中點.

(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點P在邊CD上運動,設(shè)DP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點M的位置也在變化.當(dāng)點M落在矩形ABCD外部時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(2013年四川綿陽14分)我們知道,三角形的三條中線一定會交于一點,這一點就叫做三角形的重心.重心有很多美妙的性質(zhì),如關(guān)于線段比.面積比就有一些“漂亮”結(jié)論,利用這些性質(zhì)可以解決三角形中的若干問題.請你利用重心的概念完成如下問題:

(1)若O是△ABC的重心(如圖1),連結(jié)AO并延長交BC于D,證明:;
(2)若AD是△ABC的一條中線(如圖2),O是AD上一點,且滿足,試判斷O是△ABC的重心嗎?如果是,請證明;如果不是,請說明理由;
(3)若O是△ABC的重心,過O的一條直線分別與AB、AC相交于G、H(均不與△ABC的頂點重合)(如圖3),S四邊形BCHG,SAGH分別表示四邊形BCHG和△AGH的面積,試探究的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在直角梯形ABCD中,AB為垂直于底邊的腰,AD=1,BC=2,AB=3,點E為CD上異于C,D的一個動點,過點E作AB的垂線,垂足為F,△ADE,△AEB,△BCE的面積分別為S1,S2,S3

(1)設(shè)AF=x,試用x表示S1與S3的乘積S1S3,并求S1S3的最大值;
(2)設(shè)=t,試用t表示EF的長;
(3)在(2)的條件下,當(dāng)t為何值時,S22=4S1S3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,幾何體的主視圖是( 。

A. B. C. D. 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

若某幾何體的三視圖如圖,則這個幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,下列水平放置的幾何體中,俯視圖是三角形的是(   )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案