如圖,AD為△ABC的角平分線,AD的垂直平分線分別交AB、AC于N、M兩點,求證:ND∥AC.

答案:略
解析:

證明:∵MNAD的垂直平分線(已知),

NA=ND(線段垂直平分線上的點到線段兩端點距離相等)

∠NAD=∠NDA(等邊對等角)

AD平分∠BAC(已知),

∠NAD=∠DAC

∠NDA=∠DAC(等量代換)

NDAC(內(nèi)錯角相等.兩直線平行)


提示:

證明線平行,往往通過證角相等或互補來完成.而證角相等一般把所要用到的角放在兩個三角形中,證三角形全等,學(xué)了線段垂直平分線的性質(zhì)定理,也可應(yīng)用該定理由邊相等證角相等.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線,∠ADC=45°,把△ADC沿AD對折,點C落在點C′的位置,BC=4,求BC′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)在△BED中作BD邊上的高,垂足為F;
(2)若△ABC的面積為20,BD=5.
①△ABD的面積為
 

②求△BDE中BD邊上的高EF的長;
(3)過點E作EG∥BC,交AC于點G,連接EC、DG且相交于點O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD為△ABC的中線,BE為三角形ABD中線,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為60,BD=5,則點E到BC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度數(shù);
(2)若△ABC的面積為40,BD=5,則△BDE中BD邊上的高為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)作圖:在△BED中作BD邊上的高,垂足為F;
(3)若△ABC的面積為60,BD=6,則△BDE中BD邊上的高為多少?(請寫出解題的必要過程)
(4)過點E作EG∥BC,交AC于點G,連接EC、DG且相交于點O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊答案