【題目】已知兩個正數(shù)a,b,可按規(guī)則c=ab+a+b擴充為一個新數(shù)c,在a,b,c三個數(shù)中取兩個較大的數(shù),按上述規(guī)則擴充得到一個新數(shù),依次下去,將每擴充一次得到一個新數(shù)稱為一次操作。
(1)若a=1,b=3,按上述規(guī)則操作3次,擴充所得的數(shù)是__________;
(2)若p>q>0,經(jīng)過3次操作后擴充所得的數(shù)為(m,n為正整數(shù)),則m,n的值分別為__________.
【答案】(1)255;(2)3,2
【解析】(1)a=1,b=3,按規(guī)則操作三次,第一次:c1=7;第二次c2=31;第三次c3=255;
(2)p>q>0,第一次得:c1=pq+p+q=(q+1)(p+1)1;第二次得c2=(c1+1)(p+1)1= (p+1)2(q+1)1;所得新數(shù)大于任意舊數(shù),第三次可得c3=(c2+1)(c1+1)1=(p+1)3(q+1)21;故可得結論.
解: (1)a=1,b=3,按規(guī)則操作三次,
第一次:c1=ab+a+b=1×3+1+3=7;
第二次,7>3>1所以有:c2=3×7+3+7=31;
第三次:31>7>3所以有:c3=7×31+7+31=255;
(2)p>q>0,第一次得:c1=pq+p+q=(q+1)(p+1)1;
因為c>p>q,所以第二次得:c2=(c1+1)(p+1)1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)1;
所得新數(shù)大于任意舊數(shù),所以第三次可得c3=(c2+1)(c1+1)1=(p+1)3(q+1)21
∴m=3,n=2,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB,按下列要求完成畫圖和計算:
(1)延長線段AB到點C,使BC=2AB,取AC中點D;
(2)在(1)的條件下,如果AB=4,求線段BD的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種藥品原價為40元/盒,經(jīng)過連續(xù)兩次降價后售價為28元/盒,設平均每次降價的百分率為x,根據(jù)題意所列方程正確的是( )
A.40(1﹣x)2=40﹣28
B.40(1﹣2x)=28
C.40(1﹣x)2=28
D.40(1﹣x2)=28
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的面積為acm2 , 對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,連接AC1交BD于O1 , 以AB、AO1為鄰邊作平行四邊形AO1C2B;…;依此類推,則平行四邊形AOn﹣1CnB的面積為( )cm2 .
A.a
B. a
C. a
D.a
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC的平分線與線段BC的垂直平分線PQ相交于點P,過點P分別作PN垂直于AB于點N,PM垂直于AC于點M,BN和CM有什么數(shù)量關系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑OA⊥OC,點D在上,且=2,OA=4.
(1)∠COD= °;
(2)求弦AD的長;
(3)P是半徑OC上一動點,連結AP、PD,請求出AP+PD的最小值,并說明理由.
(解答上面各題時,請按題意,自行補足圖形)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)=++的頂點M是直線=-和直線=+的交點.
(1)若直線=+過點D(0,-3),求M點的坐標及二次函數(shù)=++的解析式;
(2)試證明無論取任何值,二次函數(shù)=++的圖象與直線=+總有兩個不同的交點;
(3)在(1)的條件下,若二次函數(shù)=++的圖象與軸交于點C,與的右交點為A,試在直線=-上求異于M的點P,使P在△CMA的外接圓上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com