【題目】拋物線y=ax2+bx+3經過點A(1,0)和點B(5,0).
(1)求該拋物線所對應的函數解析式;
(2)該拋物線與直線相交于C、D兩點,點P是拋物線上的動點且位于x軸下方,直線PM∥y軸,分別與x軸和直線CD交于點M、N.
①連結PC、PD,如圖1,在點P運動過程中,△PCD的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由;
②連結PB,過點C作CQ⊥PM,垂足為點Q,如圖2,是否存在點P,使得△CNQ與△PBM相似?若存在,求出滿足條件的點P的坐標;若不存在,說明理由.
【答案】(1);(2)①;②存在,(2,)或(,).
【解析】
試題(1)由A、B兩點的坐標,利用待定系數法可求得拋物線解析式;
(2)①可設出P點坐標,則可表示出M、N的坐標,聯(lián)立直線與拋物線解析式可求得C、D的坐標,過C、D作PN的垂線,可用t表示出△PCD的面積,利用二次函數的性質可求得其最大值;
②當△CNQ與△PBM相似時有或兩種情況,利用P點坐標,可分別表示出線段的長,可得到關于P點坐標的方程,可求得P點坐標.
試題解析:(1)∵拋物線y=ax2+bx+3經過點A(1,0)和點B(5,0),
∴,解得
∴該拋物線對應的函數解析式為;
(2)①∵點P是拋物線上的動點且位于x軸下方,
∴可設P(t,)(1<t<5),
∵直線PM∥y軸,分別與x軸和直線CD交于點M、N,
∴M(t,0),N(t,),
∴PN=.
聯(lián)立直線CD與拋物線解析式可得,解得或,
∴C(0,3),D(7,),
分別過C、D作直線PN的直線,垂足分別為E、F,如圖1,
則CE=t,DF=7﹣t,
∴S△PCD=S△PCN+S△PDN=PN·CE+PNDF=PN=,
∴當t=時,△PCD的面積有最大值,最大值為;
②存在.
∵∠CQN=∠PMB=90°,
∴當△CNQ與△PBM相似時,有或兩種情況,
∵CQ⊥PM,垂足為Q,
∴Q(t,3),且C(0,3),N(t,),
∴CQ=t,NQ=﹣3=,
∴,
∵P(t,),M(t,0),B(5,0),
∴BM=5﹣t,PM=0﹣()=,
當時,則PM=BM,即,解得t=2或t=5(舍去),此時P(2,);
當時,則BM=PM,即5﹣t=(),解得t=或t=5(舍去),此時P(,);
綜上可知存在滿足條件的點P,其坐標為P(2,)或(,).
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.
(1)求拋物線的解析式和直線AC的解析式;
(2)請在y軸上找一點M,使△BDM的周長最小,求出點M的坐標;
(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),連接AF,BE相交于點P,且AE=CF.
(1)求證:AF=BE,并求∠FPB的度數;
(2)若AE=2,試求AP·AF的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM上一點,EF⊥AM,垂足為F,交AD延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=6,F為AM的中點,求DN的長;
(3)若AB=12,DE=1,BM=5,求DN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是等邊△ABC內一點,∠AOB=110°,∠BOC=α,將△BOC繞點C按順時針方向旋轉60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格中的每個小方格都是邊長為1的正方形,我們把以格點間的連線為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形.在建立平面直角坐標系后,點B的坐標為(-1,-1).
(1)把△ABC向左平移8格后得到△A1B1C1,畫出△A1B1C1的圖形并寫出點B1的坐標;
(2)把△ABC繞點C按順時針旋轉90°后得△A2B2C2,畫出△A2B2C2的圖形并寫出B2的坐標;
(3)把△ABC以點A為位似中心放大,使放大前后對應邊的比為1∶2,畫出△AB3C3的圖形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線y上,過點C作CE∥x軸交雙曲線于點E,則CE的長為( 。
A. 2.5B. 3C. 3.5D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,過點D作DE⊥AB于點E,作DE⊥BC于點F,連接EF,求證:
(1)△ADE≌△CDF;
(2)若∠A=60°,AD=4,求△EDF的周長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com