【題目】已知拋物線與x軸的交點坐標(biāo)分別為A(1,0),B(x2,0)(點B在點A的右側(cè)),其對稱軸是x=3,該函數(shù)有最小值是﹣2.
(1)求二次函數(shù)解析式;
(2)在圖1上作平行于x軸的直線,交拋物線于C(x3,y3),D(x4,y4),求x3+x4的值;
(3)將(1)中函數(shù)的部分圖象(x>x2)向下翻折與原圖象未翻折的部分組成圖象“G”,如圖2,在(2)中平行于x軸的直線取點E(x5,y5)、(x4<x5),結(jié)合函數(shù)圖象求x3+x4+x5的取值范圍.
【答案】(1) y=(x﹣3)2﹣2.(2)x3+x4=6.(3)11<x3+x4+x5<9+2.
【解析】
(1)利用二次函數(shù)解析式的頂點式求得結(jié)果即可;
(2)根據(jù)二次函數(shù)圖象的對稱性質(zhì)解答;
(3)由已知條件可知直線與圖象“G”要有3個交點.
分類討論:分別求得平行于x軸的直線與圖象“G”有2個交點、1個交點時x3+x4+x5的取值范圍,易得直線與圖象“G”要有3個交點時x3+x4+x5的取值范圍.
(1)由上述信息可知該函數(shù)圖象的頂點坐標(biāo)為:(3,﹣2),設(shè)二次函數(shù)的表達(dá)式為:y=a(x﹣3)2﹣2.
∵該函數(shù)圖象經(jīng)過點A(1,0),∴0=a(x﹣3)2﹣2,解得:a=,∴二次函數(shù)解析式為:y=(x﹣3)2﹣2.
(2)由二次函數(shù)圖象的對稱性質(zhì)得出當(dāng)縱坐標(biāo)相等時,x3+x4=6.
(3)由已知條件可知直線與圖象“G”要有3個交點.
①當(dāng)直線與x軸重合時,有2個交點,由二次函數(shù)圖象的軸對稱性質(zhì)可求x3+x4+x5>11.
②當(dāng)直線經(jīng)過y=(x﹣3)2﹣2的圖象頂點時,有2個交點,由翻折可以得到翻折后函數(shù)圖象為y=﹣(x﹣3)2+2.
令﹣(x﹣3)2+2=﹣2時,解得:x=3±2,其中x=3﹣2(舍去),∴x3+x4+x5<9+2.
綜上所述:11<x3+x4+x5<9+2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片沿折疊后,使得點與點重合,點落在點的位置上.
(1)若,求的度數(shù);
(2)求證:;
(3)若,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點D為AB的中點,以點D為圓心作圓,半圓恰好經(jīng)過三角形的直角頂點C,以點D為頂點,作90°的∠EDF,與半圓交于點E,F(xiàn),則圖中陰影部分的面積是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(1,3)、B(3,-1),利用圖中的“格點”完成下列作圖并解答:
(1)在第三象限內(nèi)找“格點”C,使得CA=CB,則點C的坐標(biāo)是 ;
(2)在(1)的基礎(chǔ)上,標(biāo)出“格點”D,使得△DCB≌△ABC,則點D的坐標(biāo)是 ;
(3)點M是x軸上一點,且MA-MB的值最大,則點M的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(類比概念)三角形的內(nèi)切圓是以三個內(nèi)角的平分線的交點為圓心,以這點到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形
(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系
猜想結(jié)論: (要求用文字語言敘述)
寫出證明過程(利用圖1,寫出已知、求證、證明)
(性質(zhì)應(yīng)用)
①初中學(xué)過的下列四邊形中哪些是圓外切四邊形 (填序號)
A:平行四邊形:B:菱形:C:矩形;D:正方形
②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長是 .
③圓外切四邊形的周長為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是內(nèi)角的平分線,是外角的平分線,是外角的平分線,以下結(jié)論不正確的是( )
A.B.
C.D.平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,PA是⊙O的一條切線,切點為A,連接PO并延長,交⊙O于點B,過點A作AC⊥PB交⊙O于點C、交PB于點D,連接BC,當(dāng)∠P=30°時,
(1)求弦AC的長;
(2)求證:BC∥PA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,AE=CD,AD與BE相交于點P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求證:BE=AD;
(2)求∠BPD的度數(shù);
(3)求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.
(1)求A,B兩點的坐標(biāo);
(2)過B點作直線BP與x軸相交于P,且使OP=2OA, 求ΔABP的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com