(1)化簡求值:(
1
x-1
-
1
x+1
)
x2-1
x
,其中x=
5

(2)計(jì)算:-22+
8
+(
37
-2007)0-4sin45°
(3)甲、乙兩同學(xué)設(shè)計(jì)了這樣一個(gè)游戲:把三個(gè)完全一樣的小球分別標(biāo)上數(shù)字1,2,3后,放在一個(gè)不透明的口袋里,甲同學(xué)先隨意摸出一個(gè)球,記住球上標(biāo)注的數(shù)字,然后讓乙同學(xué)拋擲一個(gè)質(zhì)地均勻的、各面分別標(biāo)有數(shù)字1,2,3,4,5,6的正方體骰子,又得到另一個(gè)數(shù)字,再把兩個(gè)數(shù)字相加.若兩人的數(shù)字之和小于7,則甲獲勝;否則,乙獲勝.
①請你用畫樹狀圖或列表法把兩人所得的數(shù)字之和的所有結(jié)果都列舉出來;
②這個(gè)游戲公平嗎?如果公平,請說明理由;如果不公平,請你加以改進(jìn),使游戲變得公平.
分析:(1)根據(jù)分式的運(yùn)算法則,先化簡再代入求值.
(2)涉及零指數(shù)冪、特殊角的三角函數(shù)值等考點(diǎn).在計(jì)算時(shí),需要針對每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.
(3)游戲是否公平,關(guān)鍵要看是否游戲雙方各有50%贏的機(jī)會(huì),本題中即兩人的數(shù)字之和為7的概率是否相等,求出概率比較,即可得出結(jié)論.
解答:解:(1)(
1
x-1
-
1
x+1
)
x2-1
x
=
2
x2-1
x2-1
x
=
2
x

當(dāng)x=
5
時(shí),原式=
2
5
=
2
5
5
;

(2)-22+
8
+(
37
-2007)0-4sin45°=-4+2
2
+1-4×
2
2
=-3;

(3)①兩人所得的數(shù)字之和的所有結(jié)果如圖:精英家教網(wǎng)
②這個(gè)游戲不公平.
由圖可知,所得結(jié)果大于7的情況只有6中,即概率為
1
3
,很明顯不公平;要使游戲公平,可使兩數(shù)和為6.
點(diǎn)評:(1)考查化簡求值題;(2)考查實(shí)數(shù)的運(yùn)算;(3)考查的是游戲公平性的判斷.判斷游戲公平性就要計(jì)算每個(gè)事件的概率,概率相等就公平,否則就不公平.用到的知識(shí)點(diǎn)為:任何不等于0的數(shù)的0次冪為1;概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知a是一元二次方程x2-4x+1=0的兩個(gè)實(shí)數(shù)根中較小的根,
①求a2-4a+2012的值;
②化簡求值
1-2a+a2
a-1
-
a2-2a+1
a2-a
-
1
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解答下列各題
(1)因式分解:(a2+b22-4a2b2
(2)解不等式組:
4x-3<3(x+1)
1
2
x-1≥7-
3
2
x
;
(3)解方程:
x
x-2
-1=
2
4-x2
;
(4)化簡求值:
a2-1
a2+6a+9
÷(a+1)×
a2-9
a-1
,其中a=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、合并同類項(xiàng):
(1)化簡求值:x2+4x-(2x2-x+x2)-(3x-1),其中x=-3.
(2)求代數(shù)式2〔mn+(-3m)〕-3(2n-mn)的值,其中m+n=2,mn=-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡求值:
(1)已知|2a-b+1|+(3a+
3
2
b
2=0,求代數(shù)式
b2
a+b
÷(
a
a-b
-1)•(a-
a2
a-b
)
的值.
(2)當(dāng)x=3時(shí),求(
1
x2-2x
-
1
x2-4x+4
÷
2
x2-2x
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡求值:
(1)求2x3+4x-
1
3
x2-(x+3x2-2x3)
的值,其中x=-3.
(2)已知a=1,b=-1,求多項(xiàng)式(a3-2b3)+2(ab2-
1
2
a2b)-2(ab2-b3)
的值.
(3)已知:A=2x2-3xy+y2,B=x2-5xy+2y2,求A-2B的值,其中x=-3,y=3.

查看答案和解析>>

同步練習(xí)冊答案