【題目】學(xué)完第2章“特殊的三角形”后,老師布置了一道思考題:
如圖,點M、N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點Q.
(1)判斷△ABM與△BCN是否全等,并說明理由.
(2)判斷∠BQM是否會等于60°,并說明理由.
(3)若將題中的點M,N分別移動到BC,CA的延長線上,且BM=CN,是否能得到∠BQM=60°?請說明理由.
【答案】
(1)解:全等,理由:
∵AB=BC,∠ABM=∠BCN=60°,BM=CN,
∴△ABM≌△BCN(SAS);
(2)解:∵△ABM≌△BCN,
∴∠CBN=∠BAM,
∴∠BQM=∠BAM+∠ABQ=∠CBN+∠ABQ=∠ABC=60°;
(3)解:能得到∠BQM=60°.理由如下:
同(1)可證△ABM≌△BCN(SAS),
∴∠M=∠N,
∵∠QAN=∠CAM,∠BQM=∠N+∠QAN,∠ACB=∠M+∠CAM,
∴∠BQM=∠ACB=60°.
【解析】(1)因為AB=BC,∠ABM=∠BCN=60°,BM=CN,利用SAS可以證明;(2)根據(jù)兩個三角形全等,對應(yīng)角相等可得∠CBN=∠BAM,則∠BQM=∠BAM+∠ABQ=∠CBN+∠ABQ=∠ABC=60°;(3)和(1)同樣的求法可得△ABM≌△BCN,然后利用三角形外角的性質(zhì)求∠BQM=60°.
【考點精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識,掌握等邊三角形的三個角都相等并且每個角都是60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果2xa﹣2b﹣3ya+b+1=0是二元一次方程,那么a,b的值分別是( )
A. 1,0 B. 0,1 C. ﹣1,2 D. 2,﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)有30個數(shù),把它們分成四組,其中第一組,第二組的頻數(shù)分別為7,9,第三組的頻率為0.1,則第四組的頻數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2 ,P是AC上的一個動點.
(1)當(dāng)點P運動到∠ABC的平分線上時,連接DP、BP,求CP、DP的長;
(2)當(dāng)點P在運動過程中出現(xiàn)PD=BC時,求此時∠PDA的度數(shù);
(3)當(dāng)點P運動到什么位置時,以D,P,B,Q為頂點的平行四邊形的頂點Q恰好在邊BC上?求出此時平行四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下,學(xué)生注意力上課后逐漸增強(qiáng),中間有段時間處于較理想的穩(wěn)定狀態(tài),隨后開始分散.實驗結(jié)果表明,學(xué)生注意力指數(shù)y隨時間x(min)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)上課后第5min與第30min相比較,何時學(xué)生注意力更集中?
(2)某道難題需連續(xù)講19min,為保證效果,學(xué)生注意力指數(shù)不宜低于36,老師能否在所需要求下講完這道題?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù) a1 , a2 , a3 , a4 , …滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2017的值為( )
A.﹣1005
B.﹣1006
C.﹣1007
D.﹣1008
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在創(chuàng)建“全國文明城市”和“省級文明城區(qū)”過程中,欒城區(qū)污水處理廠決定先購買A、B兩型污水處理設(shè)備共20臺,對城區(qū)周邊污水進(jìn)行處理.已知每臺A型設(shè)備價格為12萬元,每臺B型設(shè)備價格為10萬元;1臺A型設(shè)備和2臺B型設(shè)備每周可以處理污水640噸,2臺A型設(shè)備和3臺B型設(shè)備每周可以處理污水1080噸.
(1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?
(2)要想使污水處理廠購買設(shè)備的資金不超過230萬元,但每周處理污水的量又不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com