【題目】-5+(-2)×(-7)=( )
A.9
B.3
C.10
D.0

【答案】A
【解析】根據(jù)有理數(shù)的加法法則和乘法法則可得到:-5+(-2)×(-7)=-5+14=9
【考點(diǎn)精析】通過靈活運(yùn)用有理數(shù)的四則混合運(yùn)算,掌握在沒有括號(hào)的不同級(jí)運(yùn)算中,先算乘方再算乘除,最后算加減即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2+y2-4x+6y+13=0,則2x+y的平方根為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某學(xué)校學(xué)生的個(gè)性特長(zhǎng)發(fā)展情況,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生參加音樂、體育、美術(shù)、書法等社團(tuán)活動(dòng)項(xiàng)目(每人只限一項(xiàng))的情況,并將所得數(shù)據(jù)進(jìn)行了統(tǒng)計(jì),結(jié)果如圖所示.


(1)在這次調(diào)查中,一共抽查了多少名學(xué)生?
(2)求出扇形統(tǒng)計(jì)圖中參加“音樂”活動(dòng)項(xiàng)目在扇形統(tǒng)計(jì)圖中所對(duì)扇形圓心角的度數(shù).
(3)若該校有2 400名學(xué)生,請(qǐng)估計(jì)該校參加“美術(shù)”活動(dòng)項(xiàng)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語(yǔ)句:

①一條直線有且只有一條垂線;

②不相等的兩個(gè)角一定不是對(duì)頂角;

③不在同一直線上的四個(gè)點(diǎn)可畫6條直線;

④如果兩個(gè)角是鄰補(bǔ)角,那么這兩個(gè)角的平分線組成的圖形是直角.

其中錯(cuò)誤的有(  )

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同號(hào)相乘所得之積為(
A.正
B.負(fù)
C.0
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求畫出圖形.
(1)(i)已知點(diǎn)A在格點(diǎn)(即小正方形的頂點(diǎn))上,畫一條線段AB,長(zhǎng)度為 ,且點(diǎn)B在格點(diǎn)上. (ii)以上題所畫的線段AB為一邊,另外兩條邊長(zhǎng)分別為 .畫一個(gè)△ABC,使點(diǎn)C在格點(diǎn)上(只需畫出符合條件的一個(gè)三角形).
(2)所畫出的△ABC的邊AB上的高線長(zhǎng)為 . (直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在數(shù)軸l上,一動(dòng)點(diǎn)Q從原點(diǎn)O出發(fā),沿直線l以每秒鐘2個(gè)單位長(zhǎng)度的速度來回移動(dòng),其移動(dòng)方式是先向右移動(dòng)1個(gè)單位長(zhǎng)度,再向左移動(dòng)2個(gè)單位長(zhǎng)度,又向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)4個(gè)單位長(zhǎng)度,又向右移動(dòng)5個(gè)單位長(zhǎng)度…

(1)求出5秒鐘后動(dòng)點(diǎn)Q所處的位置;
(2)如果在數(shù)軸l上還有一個(gè)定點(diǎn)A,且A與原點(diǎn)O相距20個(gè)單位長(zhǎng)度,問:動(dòng)點(diǎn)Q從原點(diǎn)出發(fā),可能與點(diǎn)A重合嗎?若能,則第一次與點(diǎn)A重合需多長(zhǎng)時(shí)間?若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律
觀察下列各式及驗(yàn)證過程:n=2時(shí),有式①: ;n=3時(shí),有式②: ;
式①驗(yàn)證:
式②驗(yàn)證:
(1)針對(duì)上述式①、式②的規(guī)律,請(qǐng)寫出n=4時(shí)的式子;
(2)請(qǐng)寫出滿足上述規(guī)律的用n(n為任意自然數(shù),且n≥2)表示的等式,并加以驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:2a2﹣8=

查看答案和解析>>

同步練習(xí)冊(cè)答案