如圖,Rt△PQR中,∠PQR=90°,當(dāng)PQ=RQ時,.根據(jù)這個結(jié)論,解決下面問題:在梯形ABCD中,∠B=45°,AD//BC,AB=5,AD=4,BC=,P是線段BC上一動點,點P從點B出發(fā),以每秒個單位的速度向C點運動.
(1)當(dāng)BP= 時,四邊形APCD為平行四邊形;
(2)求四邊形ABCD的面積;
(3)設(shè)P點在線段BC上的運動時間為t秒 ,當(dāng)P運動時,△APB可能是等腰三角形嗎?如能,請求出t的值;如不能,請說明理由.
(1);(2);(3)當(dāng),,5時,△APB是等腰三角形.
【解析】
試題分析:(1)因為APCD是平行四邊形,所以CP=AD,從而求出BP;(2)只要求出梯形ABCD的高即可;(3)△ABP為等腰三角形有三種情況:①AP=BP,②AB=BP,③AB=AP.
試題解析:(1)因為APCD是平行四邊形,所以CP=AD=4,所以BP=;
(2)做AE⊥BC于E,所以∠AEB=90°,因為∠B=45°,所以AE=BE,所以AB=AE,因為AB=5,所以AE=,故.
(3)①當(dāng)AP=BP時,有∠B=∠BAP=45°,所以∠APB=90°,由(2)可知,此時P和E重合,所以BP=AE=,于是(秒);
②當(dāng)AB=BP時(如圖2),BP=5,∴(秒);
③當(dāng)AB=AP時(如圖3),有∠B=∠APB,因為∠B=45°,所以∠BAP=90°,由題可知:,于是(秒);
綜①②③得:當(dāng)當(dāng),,5時,△APB是等腰三角形.
考點:1.四邊形綜合題;2.梯形的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:
2 |
3 |
2 |
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015屆重慶沙坪壩五校八年級上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,Rt△PQR中,∠PQR=90°,當(dāng)PQ=RQ時,.根據(jù)這個結(jié)論,解決下面問題:在梯形ABCD中,∠B=45°,AD//BC,AB=5,AD=4,BC=,P是線段BC上一動點,點P從點B出發(fā),以每秒個單位的速度向C點運動.
(1)當(dāng)BP= 時,四邊形APCD為平行四邊形;
(2)求四邊形ABCD的面積;
(3)設(shè)P點在線段BC上的運動時間為t秒 ,當(dāng)P運動時,△APB可能是等腰三角形嗎?如能,請求出t的值;如不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015屆重慶沙坪壩五校八年級上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,Rt△PQR中,∠PQR=90°,當(dāng)PQ=RQ時,.根據(jù)這個結(jié)論,解決下面問題:在梯形ABCD中,∠B=45°,AD//BC,AB=5,AD=4,BC=,P是線段BC上一動點,點P從點B出發(fā),以每秒個單位的速度向C點運動.
(1)當(dāng)BP= 時,四邊形APCD為平行四邊形;
(2)求四邊形ABCD的面積;
(3)設(shè)P點在線段BC上的運動時間為t秒 ,當(dāng)P運動時,△APB可能是等腰三角形嗎?如能,請求出t的值;如不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015屆重慶沙坪壩五校八年級上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,Rt△PQR中,∠PQR=90°,當(dāng)PQ=RQ時,.根據(jù)這個結(jié)論,解決下面問題:在梯形ABCD中,∠B=45°,AD//BC,AB=5,AD=4,BC=,P是線段BC上一動點,點P從點B出發(fā),以每秒個單位的速度向C點運動.
(1)當(dāng)BP= 時,四邊形APCD為平行四邊形;
(2)求四邊形ABCD的面積;
(3)設(shè)P點在線段BC上的運動時間為t秒 ,當(dāng)P運動時,△APB可能是等腰三角形嗎?如能,請求出t的值;如不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com