【題目】如圖,正方形ABCD的對角線AC⊥AE,射線EB交射線DC于點F,連結(jié)AF,若AF=BF,AE=4,則BE的長為_____.
【答案】
【解析】
根據(jù)題意過點E作EH⊥AB于H,由勾股定理可求CF=2BC,通過證明△BCF∽△EHB,可得BH=2EH,由勾股定理可得EH,即可求BH的長,由勾股定理可求解.
解:如圖,過點E作EH⊥AB于H,
∵四邊形ABCD是矩形,
∴AB=BC=CD=AD,∠CAB=45°,AB∥CD,
∵BF2=BC2+CF2,AF2=AD2+DF2=AD2+(DC+CF)2,且AF=BF,
∴AD2+(DC+CF)2=2(BC2+CF2),
∴CF=2BC,
設(shè)AB=BC=CD=AD=a,則CF=2a,
∵AB∥CD,
∴∠ABE=∠CFB,且∠BCF=∠BHE=90°,
∴△BCF∽△EHB,
∴=,
∴BH=2EH,
∵AC⊥AE,∠CAB=45°,
∴EH=AH,
∵AH2+EH2=AE2=16,
∴EH=AH=2,
∴BH=4,
∵BE2=BH2+EH2=32+8=40,
∴BE=,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,如果四邊形ABCD中,AD=BC=6,點E、F、G分別是AB、BD、AC的中點,那么△EGF面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標系xOy中,有AB為斜邊的等腰直角三角形ABC,其中點A(0,2),點C(﹣1,0),拋物線y=ax2+ax﹣2經(jīng)過B點.
(1)求B點的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否存在點N(點B除外),使得△ACN仍然是以AC為直角邊的等腰直角三角形?若存在,求點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點A,B分別在x軸負半軸,y軸負半軸上,AD交y軸于點F,E為CD的中點.若OB=1,BD=2EF時,反比例函數(shù)y=的圖象經(jīng)過D,E兩點,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,電腦繡花設(shè)計師準備在長120cm,寬8cm的矩形ABCD模板區(qū)域內(nèi)設(shè)計繡花方案,現(xiàn)將其劃分為區(qū)域Ⅰ(2個全等的五邊形),區(qū)域Ⅱ(2個全等的菱形),區(qū)域Ⅲ(正方形EFGH中減去與2個菱形重合的部分),剩余為不刺繡的空白部分:點O是整副圖形的對稱中心EG∥AB,H,F分別為2個菱形的中心,MH=2PH,HQ=2OQ,為了美觀,要求MT不超過10cm.若設(shè)OQ=x(cm),x為正整數(shù).
(1)用含x的代數(shù)式表示區(qū)域Ⅲ的面積;
(2)當(dāng)矩形ABCD內(nèi)區(qū)域Ⅰ的面積最小時,圖案給人的視覺感最好.求此時MN的長度;
(3)區(qū)域Ⅰ,Ⅱ,Ⅲ的刺繡方式各有不同.區(qū)域Ⅰ與區(qū)域Ⅲ所用的總針數(shù)之比為29:19,區(qū)域Ⅱ與區(qū)域Ⅲ每平方厘米所用的針數(shù)分別為a,b針(a,b均為整數(shù),a>b),區(qū)域Ⅲ的面積為正整數(shù).這時整個模板的總針數(shù)為12960針,則a+b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6,AD=8,點E是對角線BD上一動點.
(1)如圖1,當(dāng)CE⊥BD時,求DE的長;
(2)如圖2,作EM⊥EN分別交邊BC于M,交邊CD于N,連MN.
①若,求tan∠ENM;
②若E運動到矩形中心O,連CO.當(dāng)CO將△OMN分成兩部分面積比為1:2時,直接寫出CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊△AB1C1;再以等邊△AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊△AB2C2;再以等邊△AB2C2的B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊△AB3C3;…,記△B1CB2的面積為S1,△B2C1B3的面積為S2,△B3C2B4的面積為S3,如此下去,則Sn=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將四根長度相等的細木條首尾相接,用釘子釘成四邊形ABCD,轉(zhuǎn)動這個四邊形,使它形狀改變,當(dāng)∠B=90°時,如圖1,測得AC=2,當(dāng)∠B=60°時,如圖2,則BD=_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com