【題目】如圖,如果四邊形ABCD中,ADBC6,點(diǎn)E、F、G分別是AB、BDAC的中點(diǎn),那么△EGF面積的最大值為_____

【答案】4.5

【解析】

CD的值中點(diǎn)M,連接GMFM.首先證明四邊形EFMG是菱形,推出當(dāng)EFEG時(shí),四邊形EFMG是矩形,此時(shí)四邊形EFMG的面積最大,最大面積為9,由此可得結(jié)論.

解:取CD的值中點(diǎn)M,連接GMFM

AGCGAEEB,

GE是△ABC的中位線

EGBC

同理可證:FMBCEFGMAD,

ADBC6,

EGEFFMMG3

∴四邊形EFMG是菱形,

∴當(dāng)EFEG時(shí),四邊形EFMG是矩形,此時(shí)四邊形EFMG的面積最大,最大面積為9,

∴△EGF的面積的最大值為S四邊形EFMG4.5

故答案為4.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣10),下列結(jié)論:ab0,b24ac0,ab+c0c1當(dāng)x>﹣1時(shí),y0.其中正確結(jié)論的個(gè)數(shù)是( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:活動(dòng)課上,某數(shù)學(xué)興趣小組在操場(chǎng)看到馬路上行駛的汽車,突發(fā)奇想:想測(cè)量汽車的速度”.他們想到的方法是:如圖,一人站在長(zhǎng)且平行于公路()的巨型廣告牌()前的點(diǎn).廣告牌恰好擋住了此人的視線,將看不到的那段公路記為.已知此人到廣告牌和廣告牌到公路的距離分別是,一輛勻速行駛的汽車經(jīng)過公路段的時(shí)間是(不計(jì)汽車長(zhǎng)度),請(qǐng)作答:

1)請(qǐng)?jiān)趫D上畫出線段

2)求該汽車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1經(jīng)過點(diǎn)A(4,0)、B(1,0),其頂點(diǎn)為

1)求拋物線C1的表達(dá)式;

2)將拋物線C1繞點(diǎn)B旋轉(zhuǎn)180°,得到拋物線C2,求拋物線C2的表達(dá)式;

3)再將拋物線C2沿x軸向右平移得到拋物線C3,設(shè)拋物線C3x軸分別交于點(diǎn)E、F(EF左側(cè)),頂點(diǎn)為G,連接AG、DF、AD、GF,若四邊形ADFG為矩形,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象頂點(diǎn)坐標(biāo)為(1,4),且經(jīng)過點(diǎn)C3,0).

1)求該二次函數(shù)的解析式;

2)當(dāng)x取何值時(shí),yx的增大而減。

3)當(dāng)時(shí),直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸相交于A、B兩點(diǎn),與y軸的交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)為(﹣3,0),點(diǎn)C的坐標(biāo)為(0,﹣3),對(duì)稱軸為直線x=﹣1

1)求拋物線的解析式;

2)若點(diǎn)P在拋物線上,且SPOC4SBOC,求點(diǎn)P的坐標(biāo);

3)設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QDx軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)PO外,PCO的切線,C為切點(diǎn),直線POO相交于點(diǎn)AB.

1)若∠A30°,求證:PA3PB;

2)小明發(fā)現(xiàn),∠A在一定范圍內(nèi)變化時(shí),始終有∠BCP90°﹣∠P)成立.請(qǐng)你寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①abc<0;②4ac<b2;③方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;④3a+c>0;⑤當(dāng)y≥0時(shí),x的取值范圍是﹣1≤x≤3.其中結(jié)論正確的個(gè)數(shù)是(  )

A. 1個(gè)B. 2個(gè)C. 3D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線ACAE,射線EB交射線DC于點(diǎn)F,連結(jié)AF,若AFBFAE4,則BE的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案