如圖,菱形ABCD中,AB=AC,點(diǎn)E、F分別為邊AB、BC上的點(diǎn),且AE=BF,連接CE、AF交于點(diǎn)H,連接DH交AG于點(diǎn)O.則下列結(jié)論:①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD•DH中,正確的是( )

A.①②④
B.①②③
C.②③④
D.①②③④
【答案】分析:由菱形ABCD中,AB=AC,易證得△ABC是等邊三角形,則可得∠B=∠EAC=60°,由SAS即可證得△ABF≌△CAE;則可得∠BAF=∠ACE,利用三角形外角的性質(zhì),即可求得∠AHC=120°;在HD上截取HK=AH,連接AK,易得點(diǎn)A,H,C,D四點(diǎn)共圓,則可證得△AHK是等邊三角形,然后由AAS即可證得△AKD≌△AHC,則可證得AH+CH=DH;易證得△OAD∽△AHD,由相似三角形的對(duì)應(yīng)邊成比例,即可得AD2=OD•DH.
解答:解:∵四邊形ABCD是菱形,
∴AB=BC,
∵AB=AC,
∴AB=BC=AC,
即△ABC是等邊三角形,
同理:△ADC是等邊三角形
∴∠B=∠EAC=60°,
在△ABF和△CAE中,

∴△ABF≌△CAE(SAS);
故①正確;
∴∠BAF=∠ACE,
∵∠AEH=∠B+∠BCE,
∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°;
故②正確;
在HD上截取HK=AH,連接AK,
∵∠AHC+∠ADC=120°+60°=180°,
∴點(diǎn)A,H,C,D四點(diǎn)共圓,
∴∠AHD=∠ACD=60°,∠ACH=∠ADH,
∴△AHK是等邊三角形,
∴AK=AH,∠AKH=60°,
∴∠AKD=∠AHC=120°,
在△AKD和△AHC中,

∴△AKD≌△AHC(AAS),
∴CH=DK,
∴DH=HK+DK=AH+CH;
故③正確;
∵∠OAD=∠AHD=60°,∠ODA=∠ADH,
∴△OAD∽△AHD,
∴AD:DH=OD:AD,
∴AD2=OD•DH.
故④正確.
故選D.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).此題難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點(diǎn),且BE=DF.
(1)求證:AE=AF;
(2)若∠B=60°,點(diǎn)E,F(xiàn)分別為BC和CD的中點(diǎn),求證:△AEF為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD中,∠A=60°,AB=2,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿B→C→D向終點(diǎn)D運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以相同的速度沿A→D→B向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為x秒,當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)△APQ的面積為y,則反映y與x的函數(shù)關(guān)系的圖象是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD中,∠BAD=60°,M是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),若AB長(zhǎng)為2
3
,則PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:菱形ABCD中,E是AB的中點(diǎn),且CE⊥AB,AB=6cm.
求:(1)∠BCD的度數(shù);
(2)對(duì)角線BD的長(zhǎng);
(3)菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的長(zhǎng).
(2)求菱形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案