精英家教網 > 初中數學 > 題目詳情

【題目】如圖,某高樓OB上有一旗桿CB,我校數學興趣小組的同學準備利用所學的三角函數知識估測該高樓的高度,由于有其他建筑物遮擋視線不便測量,所以測量員沿坡度i=1:的山坡從坡腳的A處前行50米到達P處,測得旗桿頂部C的仰角為45°,旗桿底部B的仰角為37°(測量員的身高忽略不計),已知旗桿高BC=15米,則該高樓OB的高度為( 。┟祝▍⒖紨祿sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A. 45 B. 60 C. 70 D. 85

【答案】C

【解析】

過點PPD⊥OCD,PE⊥OAE,則四邊形ODPE為矩形,

∴PE=OD,

∵AP坡的坡度i=1:,

∴tan∠PAE=,

∴∠PAE=30°,

∴PE=AP=25,

Rt△PBD,∠BDP=90°,∠BPD=37°,

∴BD=PDtan∠BPD≈PD,

Rt△CPD,∠CDP=90°,∠CPD=45°,

∴CD=PD,

∵CDBD=BC,

∴PDPD=15,

解得,PD=60,

∴BD=×60=45,

∴OB=OD+BD=25+45=70,

故選:C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】圖l、圖2均為8×6的方格紙(每個小正方形的邊長均為1),在方格紙中各有一條線段AB,其中點A、B均在小正方形的頂點上,請按要求畫圖:

(1)在圖l中畫一直角ABC,使得tan∠BAC=,點C在小正方形的頂點上;

(2)在圖2中畫一個ABEF,使得ABEF的面積為圖1中ABC面積的4倍,點E、F在小正方形的頂點上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊿中,,點分別在 邊上,且, .

⑴.求證:⊿是等腰三角形;

⑵.當 時,求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4).

(1)請在圖中,畫出ABC向左平移6個單位長度后得到的△A1B1C1;

(2)以點O為位似中心,將ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側,畫出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC, C = 90°,∠B= 30°,點D是線段AB的垂直平分線與BC的交點, 連接AD,則△ACD與△ADB的面積比為( )

A.1B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點C1在邊BC上,將C1CD繞點D順時針旋轉90°得到A1AD.A1F平分∠BA1C1,交BD于點F,過點FFEA1C1,垂足為E,當A1E=3,C1E=2時,則BD的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖,折疊長方形的一邊AD,使點D落在BC邊的點F處,已知AB5厘米,BC13厘米,求線段CFCE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CD為⊙O的直徑ABCD于點E,連接BDOB

(1)求證:△AEC∽△DEB;

(2)CDABAB=8,DE=2,求⊙O的半徑

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側取點A、B,使CAD=300,CBD=600

(1)求AB的長(精確到0.1米,參考數據:);

(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.

查看答案和解析>>

同步練習冊答案