操作與探索:如圖,在△ABC中,AC=BC=2,∠C=90°,將一塊三角板的直角頂點放在斜邊的中點P處,繞點P旋轉(zhuǎn).設三角板的直角邊PM交線段CB于E點,當CE=0,即E點和C點重合時,有PE=PB,△PBE為等腰三角形,此外,當CE等于______時,△PBE為等腰三角形.
∵在△ABC中,AC=BC=2,∠C=90°,
∴AB=
AC2+BC2
=2
2

又∵P點為AB的中點,
∴PB=
2
,
①若PE=PB,連接PC,∵PB=PC,∴C、E兩點重合,此時CE=0;
②若PB=BE,則CE=BC-BE=2-
2

③若PE=BE,此時PE⊥BE,
∵P點為AB的中點,∴E點為BC的中點,
即CE=
1
2
BC=1.
故答案為:1或2-
2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

已知點A的坐標為(a,b),O為坐標原點,連接OA,將線段OA繞點O按逆時針方向旋轉(zhuǎn)90°得OA1,則點A1的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知扇形OAB的圓心角為60°,半徑為1,將它沿著箭頭所示方向無滑動滾動到O′A′B′位置時,求點O到O′所經(jīng)過的路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

同學們曾玩過萬花筒,它是由三塊等寬等長的玻璃片圍成的.如圖是看到的萬花筒的一個圖案,圖中所有小三角形均是全等的等邊三角形,其中的菱形AEFG可以看成是把菱形ABCD以A為中心( 。
A.順時針旋轉(zhuǎn)60°得到B.順時針旋轉(zhuǎn)120°得到
C.逆時針旋轉(zhuǎn)60°得到D.逆時針旋轉(zhuǎn)120°得到

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,ABCD是一張矩形紙片,點O為矩形對角線的交點.直線MN經(jīng)過點O交AD于M,交BC于N.操作:先沿直線MN剪開,并將直角梯形MNCD繞點O旋轉(zhuǎn)______度后(填入一個你認為正確的序號:①90°;②180°;③270°;④360°),恰與直角梯形NMAB完全重合;再將重合后的直角梯形MNCD以直線MN為軸翻轉(zhuǎn)180°后所得到的圖形是下列中的______.(填寫正確圖形的代號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,△ACD和△BCE都是等邊三角形,△NCE經(jīng)過順時針旋轉(zhuǎn)得到△MCB.
(1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)了多少度?
(2)如果連接MN,那么,△MNC是什么三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀與理解:
圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與證明:
(1)操作:固定△ABC,將△C′DE繞點C按順時針方向旋轉(zhuǎn)30°,連接AD,BE,如圖2;在圖2中,線段BE與AD之間具有怎樣的大小關系?證明你的結(jié)論;

(2)操作:若將圖1中的△C′DE,繞點C按順時針方向任意旋轉(zhuǎn)一個角度α,連接AD,BE,如圖3;在圖3中,線段BE與AD之間具有怎樣的大小關系?證明你的結(jié)論;
猜想與發(fā)現(xiàn):
根據(jù)上面的操作過程,請你猜想當α為多少度時,線段AD的長度最大是多少?當α為多少度時,線段AD的長度最小是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

把兩個三角形按如圖1放置,其中∠ACB=∠DEC=90°,∠CAB=45°,∠CDE=30°,且AB=12,DC=14,把△DCE繞點C順時針旋轉(zhuǎn)15°得△D1CE1,如圖2,這時AB與CD1相交于點O、與D1E1相交于點F;
(1)求∠ACD1的度數(shù);
(2)求線段AD1的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在一個10×10的正方形DEFG網(wǎng)格中有一個△ABC.
①在網(wǎng)格中畫出△ABC向下平移3個單位得到的△A1B1C1;
②在網(wǎng)格中畫出△ABC繞C點逆時針方向旋轉(zhuǎn)90°得到的△A2B2C;
③若以EF所在的直線為x軸,ED所在的直線為y軸建立直角坐標系,寫出A1、A2兩點的坐標.

查看答案和解析>>

同步練習冊答案