【題目】如圖,在菱形ABCD中,AC,BD相交于點O,E為AB的中點,DE⊥AB.
(1)求∠ABC的度數(shù);
(2)如果AC=,求DE的長.
【答案】(1)120°;(2)
【解析】試題分析:(1)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據(jù)菱形的四條邊都相等可得AB=AD,然后求出AB=AD=BD,從而得到△ABD是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求出△DAB=60°,然后根據(jù)兩直線平行,同旁內(nèi)角互補求解即可;
(2)根據(jù)菱形的對角線互相平分求出AO,再根據(jù)等邊三角形的性質(zhì)可得DE=AO.
解:(1)∵E為AB的中點,DE⊥AB,
∴AD=DB,
∵四邊形ABCD是菱形,
∴AB=AD,
∴AD=DB=AB,
∴△ABD為等邊三角形.
∴∠DAB=60°.
∵菱形ABCD的邊AD∥BC,
∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,
即∠ABC=120°;
(2)∵四邊形ABCD是菱形,
∴BD⊥AC于O,AO=AC=×4=2,
由(1)可知DE和AO都是等邊△ABD的高,
∴DE=AO=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,將二次函數(shù)的圖象M沿x軸翻折,把所得到的圖象向右平移2個單位長度后再向上平移8個單位長度,得到二次函數(shù)圖象N.
(1)求N的函數(shù)表達式;
(2)設(shè)點P(m,n)是以點C(1,4)為圓心、1為半徑的圓上一動點,二次函數(shù)的圖象M與x軸相交于兩點A、B,求的最大值;
(3)若一個點的橫坐標與縱坐標均為整數(shù),則該點稱為整點.求M與N所圍成封閉圖形內(nèi)(包括邊界)整點的個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】命題“如果兩個角相等,那么它們都是直角”的逆命題是( )
A.如果兩個角不相等,那么它們都不是直角
B.如果兩個角都不是直角,那么這兩個角不相等
C.如果兩個角都是直角,那么這兩個角相等
D.相等的兩個角都是直角
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于多項式26﹣3x5+x4+x3+x2+x的說法正確的是( 。
A. 是六次六項式 B. 是五次六項式
C. 是六次五項式 D. 是五次五項式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知開口向下的拋物線y1=ax2﹣2ax+1過點A(m,1),與y軸交于點C,頂點為B,將拋物線y1繞點C旋轉(zhuǎn)180°后得到拋物線y2,點A,B的對應(yīng)點分別為點D,E.
(1)直接寫出點A,C,D的坐標;
(2)當四邊形ABCD是矩形時,求a的值及拋物線y2的解析式;
(3)在(2)的條件下,連接DC,線段DC上的動點P從點D出發(fā),以每秒1個單位長度的速度運動到點C停止,在點P運動的過程中,過點P作直線l⊥x軸,將矩形ABDE沿直線l折疊,設(shè)矩形折疊后相互重合部分面積為S平方單位,點P的運動時間為t秒,求S與t的函數(shù)關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,從左起第1個等邊三角形的邊長記為a1,第2個等邊三角形的邊長記為a2,以此類推.若OA1=1,則a2017= ______ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com